torsional, teleparallel and f(t) gravity and cosmologyviavca.in2p3.fr/presentations/torsional...1)...

Post on 27-Jul-2020

7 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Torsional, Teleparallel and f(T) Gravity

and Cosmology

Emmanuel N. Saridakis

Physics Department, National and Technical University of Athens, Greece Physics Department, Baylor University, Texas, USA

E.N.Saridakis – VIA web lecture, Feb 2014

2

Goal

n  We investigate cosmological scenarios in a universe governed by torsional modified gravity

n Note: A consistent or interesting cosmology

is not a proof for the consistency of the underlying gravitational theory

E.N.Saridakis – VIA web lecture, Feb 2014

3

Talk Plan n  1) Introduction: Gravity as a gauge theory, modified Gravity

n  2) Teleparallel Equivalent of General Relativity and f(T) modification

n  3) Perturbations and growth evolution

n  4) Bounce in f(T) cosmology

n  5) Non-minimal scalar-torsion theory

n  6) Black-hole solutions

n  7) Solar system and growth-index constraints

n  8) Conclusions-Prospects

E.N.Saridakis – VIA web lecture, Feb 2014

4

Introduction

n  Einstein 1916: General Relativity: energy-momentum source of spacetime Curvature Levi-Civita connection: Zero Torsion n  Einstein 1928: Teleparallel Equivalent of GR: Weitzenbock connection: Zero Curvature

n  Einstein-Cartan theory: energy-momentum source of Curvature, spin source of Torsion

[Hehl, Von Der Heyde, Kerlick, Nester Rev.Mod.Phys.48]

E.N.Saridakis – VIA web lecture, Feb 2014

5

Introduction

n  Gauge Principle: global symmetries replaced by local ones:

The group generators give rise to the compensating fields

It works perfect for the standard model of strong, weak and E/M interactions

n  Can we apply this to gravity?

( ) ( ) )1(23 USUSU ××

E.N.Saridakis – VIA web lecture, Feb 2014

6

Introduction

n  Formulating the gauge theory of gravity (mainly after 1960): n  Start from Special Relativity Apply (Weyl-Yang-Mills) gauge principle to its Poincaré- group symmetries Get Poinaré gauge theory: Both curvature and torsion appear as field strengths

n  Torsion is the field strength of the translational group (Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory)

[Blagojevic, Hehl, Imperial College Press, 2013]

E.N.Saridakis – VIA web lecture, Feb 2014

7

Introduction

n  One could extend the gravity gauge group (SUSY, conformal, scale, metric affine transformations)

obtaining SUGRA, conformal, Weyl, metric affine gauge theories of gravity

n  In all of them torsion is always related to the gauge structure.

n  Thus, a possible way towards gravity quantization would need to bring torsion into gravity description.

E.N.Saridakis – VIA web lecture, Feb 2014

8

Introduction

n  1998: Universe acceleration Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,

nonminimal derivative coupling, Galileons, Hordenski, massive etc)

n  Almost all in the curvature-based formulation of gravity

[Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]

E.N.Saridakis – VIA web lecture, Feb 2014

9

Introduction

n  1998: Universe acceleration Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,

nonminimal derivative coupling, Galileons, Hordenski, massive etc)

n  Almost all in the curvature-based formulation of gravity

n  So question: Can we modify gravity starting from its torsion-based formulation?

torsion gauge quantization modification full theory quantization

⇒ ⇒?⇒ ⇒?

[Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]

E.N.Saridakis – VIA web lecture, Feb 2014

10

Teleparallel Equivalent of General Relativity (TEGR)

n  Let’s start from the simplest tosion-based gravity formulation, namely TEGR:

n  Vierbeins : four linearly independent fields in the tangent space n  Use curvature-less Weitzenböck connection instead of torsion-less

Levi-Civita one: n  Torsion tensor:

)()()( xexexg BAAB νµµν η=

µAe

AA

W ee νµλλ

νµ ∂=Γ }{

( )AAA

WW eeeT µννµλλ

µνλνµ

λµν ∂−∂=Γ−Γ= }{}{ [Einstein 1928], [Pereira: Introduction to TG]

E.N.Saridakis – VIA web lecture, Feb 2014

11

Teleparallel Equivalent of General Relativity (TEGR)

n  Let’s start from the simplest tosion-based gravity formulation, namely TEGR:

n  Vierbeins : four linearly independent fields in the tangent space n  Use curvature-less Weitzenböck connection instead of torsion-less

Levi-Civita one: n  Torsion tensor:

n  Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2nd order in torsion tensor)

)()()( xexexg BAAB νµµν η=

µAe

AA

W ee νµλλ

νµ ∂=Γ }{

( )AAA

WW eeeT µννµλλ

µνλνµ

λµν ∂−∂=Γ−Γ= }{}{

νµν

ρρµνµρ

ρµνρµν

ρµν ΤΤ−+=≡ TTTTTL21

41

[Einstein 1928], [Hayaski,Shirafuji PRD 19], [Pereira: Introduction to TG]

n  Completely equivalent with GR at the level of equations

E.N.Saridakis – VIA web lecture, Feb 2014

12

f(T) Gravity and f(T) Cosmology

n  f(T) Gravity: Simplest torsion-based modified gravity n  Generalize T to f(T) (inspired by f(R))

n  Equations of motion:

( )( ) }{1 4)]([41)(1 ΕΜ− Τ=+−∂+−+∂ ν

ρρν

µµνρ

ρνµρ

ρµλ

λµνρ

ρµ π AATTAATA GeTfTefTSeSTefSeee

[Bengochea, Ferraro PRD 79], [Linder PRD 82] [ ] mSTfTexdG

S ++= ∫ )(161 4

π

E.N.Saridakis – VIA web lecture, Feb 2014

13

f(T) Gravity and f(T) Cosmology

n  f(T) Gravity: Simplest torsion-based modified gravity n  Generalize T to f(T) (inspired by f(R))

n  Equations of motion:

n  f(T) Cosmology: Apply in FRW geometry:

(not unique choice)

n  Friedmann equations:

[ ] mSTfTexdG

S ++= ∫ )(161 4

π

( )( ) }{1 4)]([41)(1 ΕΜ− Τ=+−∂+−+∂ ν

ρρν

µµνρ

ρνµρ

ρµλ

λµνρ

ρµ π AATTAATA GeTfTefTSeSTefSeee

[Bengochea, Ferraro PRD 79], [Linder PRD 82]

jiij

A dxdxtadtdsaaadiage δµ )(),,,1( 222 −=⇒=

22 26)(

38 HfTfGH Tm −−= ρπ

TTT

mm

fHfpGH 2121)(4

−++

−=ρπ!

n  Find easily 26HT −=

E.N.Saridakis – VIA web lecture, Feb 2014

14

f(T) Cosmology: Background

n  Effective Dark Energy sector:

n  Interesting cosmological behavior: Acceleration, Inflation etc n  At the background level indistinguishable from other dynamical DE models

⎥⎦

⎤⎢⎣

⎡ +−= TDE fTfG 3683π

ρ

]2][21[2 2

TTTT

TTTDE TffTff

fTTffw−++

+−−=

[Linder PRD 82]

E.N.Saridakis – VIA web lecture, Feb 2014

15

f(T) Cosmology: Perturbations

n  Can I find imprints of f(T) gravity? Yes, but need to go to perturbation level

n  Obtain Perturbation Equations:

n  Focus on growth of matter overdensity go to Fourier modes:

)1(,)1(00 φαδψδ αµ

αµµµ −=+= ee ji

ij dxdxadtds δφψ )21()21( 222 −−+=⇒

SHRSHL .... =

SHRSHL .... =! [Chen, Dent, Dutta, Saridakis PRD 83],

[Dent, Dutta, Saridakis JCAP 1101]

m

m

ρδρ

δ ≡

( ) [ ] 0436)1)(/3(1213 42222 =+−+++−+ kmkTTTkTTT GfHfakHfHfH δρπφφ!

[Chen, Dent, Dutta, Saridakis PRD 83]

E.N.Saridakis – VIA web lecture, Feb 2014

16

f(T) Cosmology: Perturbations

n  Application: Distinguish f(T) from quintessence n  1) Reconstruct f(T) to coincide with a given quintessence scenario:

with and

CHdHH

GHHf Q += ∫ 216)(ρ

π )(2/2 φφρ VQ += ! 6/Τ−=Η

[Dent, Dutta, Saridakis JCAP 1101]

E.N.Saridakis – VIA web lecture, Feb 2014

17

f(T) Cosmology: Perturbations

n  Application: Distinguish f(T) from quintessence n  2) Examine evolution of matter overdensity

[Dent, Dutta, Saridakis JCAP 1101]

m

m

ρδρ

δ ≡

E.N.Saridakis – VIA web lecture, Feb 2014

18

Bounce and Cyclic behavior

n  Contracting ( ), bounce ( ), expanding ( ) near and at the bounce

n  Expanding ( ), turnaround ( ), contracting near and at the turnaround

0<H 0=H 0>H0>H!

0>H 0=H 0<H0<H!

E.N.Saridakis – VIA web lecture, Feb 2014

19

Bounce and Cyclic behavior in f(T) cosmology

n  Contracting ( ), bounce ( ), expanding ( ) near and at the bounce

n  Expanding ( ), turnaround ( ), contracting near and at the turnaround

0<H 0=H 0>H0>H!

0>H 0=H 0<H0<H!

22 26)(

38 HfTfGH Tm −−= ρπ

TTT

mm

fHfpGH 2121)(4

−++

−=ρπ!

n  Bounce and cyclicity can be easily obtained [Cai, Chen, Dent, Dutta, Saridakis CQG 28]

E.N.Saridakis – VIA web lecture, Feb 2014

20

Bounce in f(T) cosmology

n  Start with a bounching scale factor:

3/12

231)( ⎟

⎞⎜⎝

⎛ += tata B σ

⎟⎟

⎜⎜

⎛ ++−−±=⇒ 2

43

34

32

34)(

σσσ

σ TT

TTt

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

++

+=⇒ tsArcTan

ttM

tMtttf mB

pmB

p 236

326

)32(4)( 2

22

22 ρσσσρ

σ

E.N.Saridakis – VIA web lecture, Feb 2014

21

Bounce in f(T) cosmology

n  Start with a bounching scale factor:

n  Examine the full perturbations:

with known in terms of and matter

n  Primordial power spectrum: n  Tensor-to-scalar ratio:

⎟⎟

⎜⎜

⎛ ++−−±=⇒ 2

43

34

32

34)(

σσσ

σ TT

TTt

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

++

+=⇒ tsArcTan

ttM

tMtttf mB

pmB

p 236

326

)32(4)( 2

22

22 ρσσσρ

σ

02

222 =+++ kskkk akc φφµφαφ !!! 22 ,, scµα TTT fffHH ,,,, !

22288 pMP

πσ

ζ =

01123 2

2

=+

−⎟⎟⎠

⎞⎜⎜⎝

⎛ ∇−+ h

ffHHh

ahHh

T

TTijijij

!!!!!

3108.2 −×≈r

⇒⇒

[Cai, Chen, Dent, Dutta, Saridakis CQG 28]

3/12

231)( ⎟

⎞⎜⎝

⎛ += tata B σ

E.N.Saridakis – VIA web lecture, Feb 2014

22

Non-minimally coupled scalar-torsion theory

n  In curvature-based gravity, apart from one can use n  Let’s do the same in torsion-based gravity:

[Geng, Lee, Saridakis, Wu PLB704]

2^ϕξRR +)(RfR +

( ) ⎥⎦

⎤⎢⎣

⎡ +−+∂∂+= ∫ mLVTTexdS )(21

22

24 ϕϕξϕϕ

κµ

µ

E.N.Saridakis – VIA web lecture, Feb 2014

23

Non-minimally coupled scalar-torsion theory

n  In curvature-based gravity, apart from one can use n  Let’s do the same in torsion-based gravity:

n  Friedmann equations in FRW universe: with effective Dark Energy sector:

n  Different than non-minimal quintessence! (no conformal transformation in the present case)

2^ϕξRR +)(RfR +

( ) ⎥⎦

⎤⎢⎣

⎡ +−+∂∂+= ∫ mLVTTexdS )(21

22

24 ϕϕξϕϕ

κµ

µ

( )DEmH ρρκ+=

3

22

( )DEDEmm ppH +++−= ρρκ2

2!

222

3)(2

ϕξϕϕ

ρ HVDE −+=!

( ) 222

234)(2

ϕξϕϕξϕϕ HHHVpDE !!!

+++−=

[Geng, Lee, Saridakis,Wu PLB 704]

[Geng, Lee, Saridakis, Wu PLB704]

E.N.Saridakis – VIA web lecture, Feb 2014

24

Non-minimally coupled scalar-torsion theory

n  Main advantage: Dark Energy may lie in the phantom regime or/and experience the phantom-divide crossing

n  Teleparallel Dark Energy:

[Geng, Lee, Saridakis, Wu PLB 704]

E.N.Saridakis – VIA web lecture, Feb 2014

25

Observational constraints on Teleparallel Dark Energy

n  Use observational data (SNIa, BAO, CMB) to constrain the parameters of the theory

n  Include matter and standard radiation: n  We fit for various

ξ,0DEDE0M0 w,Ω,Ω )(ϕV

azaa rrMM /11,/,/ 40

30 =+== ρρρρ

E.N.Saridakis – VIA web lecture, Feb 2014

26

Observational constraints on Teleparallel Dark Energy

Exponential potential

Quartic potential

[Geng, Lee, Saridkis JCAP 1201] E.N.Saridakis – VIA web lecture, Feb 2014

27

Phase-space analysis of Teleparallel Dark Energy

n  Transform cosmological system to its autonomous form:

n  Linear Perturbations: n  Eigenvalues of determine type and stability of C.P

),sgn(13

2222 ξ

ρ zyx=Hm

m +−−≡Ω⇒

[Xu, Saridakis, Leon, JCAP 1207] ( )ξ,,, zyxw=w DEDE

,f(X)=X'⇒QUU =⇒ 'UX=X C +

0' =|XCX=X

Q

κϕξϕκϕκ

=== zHVy

Hx ,

3)(,

6!

)sgn(3

2222 ξ

ρ zyx=HDE

DE −+≡Ω

E.N.Saridakis – VIA web lecture, Feb 2014

28

Phase-space analysis of Teleparallel Dark Energy

n  Apart from usual quintessence points, there exists an extra stable one for corresponding to

[Xu, Saridakis, Leon, JCAP 1207]

ξλ <2 1,1,1 −=−==Ω qwDEDE

n  At the critical points however during the evolution it can lie in quintessence or phantom regimes, or experience the phantom-divide crossing!

1−≥DEw

E.N.Saridakis – VIA web lecture, Feb 2014

29

Exact charged black hole solutions

n  Extend f(T) gravity in D-dimensions (focus on D=3, D=4):

n  Add E/M sector: with

n  Extract field equations:

[ ]Λ−+= ∫ 2)(21 TfTexdS D

κ

FFLF∗∧−=

21 µ

µdxAAdAF ≡= ,

SHRSHL .... =[Gonzalez, Saridakis, Vasquez, JHEP 1207]

[Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302]

E.N.Saridakis – VIA web lecture, Feb 2014

30

Exact charged black hole solutions

n  Extend f(T) gravity in D-dimensions (focus on D=3, D=4):

n  Add E/M sector: with

n  Extract field equations:

n  Look for spherically symmetric solutions:

n  Radial Electric field: known

[ ]Λ−+= ∫ 2)(21 TfTexdS D

κ

FFLF∗∧−=

21 µ

µdxAAdAF ≡= ,

SHRSHL .... =

∑−

−−=⇒2

1

2222

222

)(1)(

D

idxrdrrG

dtrFds

!,,,,)(

1,)( 23

1210 rdxerdxedr

rGedtrFe ====

2−= Dr rQE 22 )(,)( rGrF⇒

[Gonzalez, Saridakis, Vasquez, JHEP 1207], [Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302] E.N.Saridakis – VIA web lecture, Feb 2014

31

Exact charged black hole solutions

n  Horizon and singularity analysis: n  1) Vierbeins, Weitzenböck connection, Torsion invariants: T(r) known obtain horizons and singularities

n  2) Metric, Levi-Civita connection, Curvature invariants: R(r) and Kretschmann known obtain horizons and singularities

[Gonzalez, Saridakis, Vasquez, JHEP1207], [Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302]

)(rRR µνρσµνρσ

E.N.Saridakis – VIA web lecture, Feb 2014

32

Exact charged black hole solutions

[Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302] E.N.Saridakis – VIA web lecture, Feb 2014

33

Exact charged black hole solutions

n  More singularities in the curvature analysis than in torsion analysis! (some are naked)

n  The differences disappear in the f(T)=0 case, or in the uncharged case.

n  Should we go to quartic torsion invariants?

n  f(T) brings novel features.

n  E/M in torsion formulation was known to be nontrivial (E/M in Einstein-Cartan and Poinaré theories)

E.N.Saridakis – VIA web lecture, Feb 2014

34

Solar System constraints on f(T) gravity

n  Apply the black hole solutions in Solar System: n  Assume corrections to TEGR of the form

)()( 32 TOTTf +=α

⎥⎦

⎤⎢⎣

⎡ Λ−−Λ−+

Λ−−=⇒

rcGM

rr

rcGMrF 22

22

2 4663

21)( α

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ −Λ−Λ−−Λ

−−=⇒ 2222

22

22 882224

38

321)(

rrcGMr

rr

rcGMrG α

E.N.Saridakis – VIA web lecture, Feb 2014

35

Solar System constraints on f(T) gravity

n  Apply the black hole solutions in Solar System: n  Assume corrections to TEGR of the form

n  Use data from Solar System orbital motions:

T<<1 so consistent

n  f(T) divergence from TEGR is very small n  This was already known from cosmological observation constraints up to n  With Solar System constraints, much more stringent bound.

)()( 32 TOTTf +=α

⎥⎦

⎤⎢⎣

⎡ Λ−−Λ−+

Λ−−=⇒

rcGM

rr

rcGMrF 22

22

2 4663

21)( α

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ −Λ−Λ−−Λ

−−=⇒ 2222

22

22 882224

38

321)(

rrcGMr

rr

rcGMrG α

10)( 102.6 −×≤Δ TfU

[Iorio, Saridakis, Mon.Not.Roy.Astron.Soc 427)

)1010( 21 −− −O [Wu, Yu, PLB 693], [Bengochea PLB 695]

E.N.Saridakis – VIA web lecture, Feb 2014

n  Perturbations: , clustering growth rate:

n  γ(z): Growth index.

36

Growth-index constraints on f(T) gravity

)(lnln

aad

dm

m γδΩ=

)('11Tf

Geff +=

mmeffmm GH δρπδδ 42 =+ !!!

E.N.Saridakis – VIA web lecture, Feb 2014

37

Growth-index constraints on f(T) gravity

)(lnln

aad

dm

m γδΩ=

)('11Tf

Geff +=

[Nesseris, Basilakos, Saridakis, Perivolaropoulos, PRD 88]

mmeffmm GH δρπδδ 42 =+ !!!n  Perturbations: , clustering growth rate:

n  γ(z): Growth index.

n  Viable f(T) models are practically indistinguishable from ΛCDM.

E.N.Saridakis – VIA web lecture, Feb 2014

38

Open issues of f(T) gravity

n  f(T) cosmology is very interesting. But f(T) gravity and nonminially coupled teleparallel gravity has many open issues

n  For nonlinear f(T), Lorentz invariance is not satisfied n  Equivalently, the vierbein choices corresponding to the same metric are

not equivalent (extra degrees of freedom)

[Li, Sotiriou, Barrow PRD 83a],

[Li,Sotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]

[Geng,Lee,Saridakis,Wu PLB 704]

E.N.Saridakis – VIA web lecture, Feb 2014

39

Open issues of f(T) gravity

n  f(T) cosmology is very interesting. But f(T) gravity and nonminially coupled teleparallel gravity has many open issues

n  For nonlinear f(T), Lorentz invariance is not satisfied n  Equivalently, the vierbein choices corresponding to the same metric are

not equivalent (extra degrees of freedom)

n  Black holes are found to have different behavior through curvature and torsion analysis

n  Thermodynamics also raises issues

n  Cosmological, Solar System and Growth Index observations constraint f(T) very close to linear-in-T form

[Li, Sotiriou, Barrow PRD 83a],

[Li,Miao,Miao JHEP 1107]

[Capozzielo, Gonzalez, Saridakis, Vasquez JHEP 1302]

[Bamba, Capozziello, Nojiri, Odintsov ASS 342], [Miao,Li,Miao JCAP 1111]

[Geng,Lee,Saridakis,Wu PLB 704]

[Nesseris, Basilakos, Saridakis, Perivolaropoulos, PRD 88]

[Iorio, Saridakis, Mon.Not.Roy.Astron.Soc 427)

E.N.Saridakis – VIA web lecture, Feb 2014

40

Gravity modification in terms of torsion?

n  So can we modify gravity starting from its torsion formulation?

n  The simplest, a bit naïve approach, through f(T) gravity is interesting, but has open issues

n  Additionally, f(T) gravity is not in correspondence with f(R)

n  Even if we find a way to modify gravity in terms of torsion, will it be still in 1-1 correspondence with curvature-based modification?

n  What about higher-order corrections, but using torsion invariants (similar to Gauss Bonnet, Lovelock, Hordenski modifications)?

n  Can we modify gauge theories of gravity themselves? E.g. can we modify Poincaré gauge theory?

E.N.Saridakis – VIA web lecture, Feb 2014

41

Conclusions n  i) Torsion appears in all approaches to gauge gravity, i.e to the first step

of quantization. n  ii) Can we modify gravity based in its torsion formulation? n  iii) Simplest choice: f(T) gravity, i.e extension of TEGR n  iv) f(T) cosmology: Interesting phenomenology. Signatures in growth

structure. n  v) We can obtain bouncing solutions n  vi) Non-minimal coupled scalar-torsion theory : Quintessence,

phantom or crossing behavior. n  vii) Exact black hole solutions. Curvature vs torsion analysis. n  viii) Solar system constraints: f(T) divergence from T less than n  ix) Growth Index constraints: Viable f(T) models are practically

indistinguishable from ΛCDM. n  x) Many open issues. Need to search for other torsion-based

modifications too.

2ξTT ϕ+

1010−

E.N.Saridakis – VIA web lecture, Feb 2014

42

Outlook n  Many subjects are open. Amongst them:

n  i) Examine thermodynamics thoroughly.

n  ii) Understand the extra degrees of freedom and the extension to non-diagonal vierbeins.

n  iii) Try to modify TEGR using higher-order torsion invariants.

n  iv) Try to modify Poincaré gauge theory (extremely hard!)

n  v) What to quantize? Metric, vierbeins, or connection?

n  vi) Convince people to work on the subject!

E.N.Saridakis – VIA web lecture, Feb 2014

43

THANK YOU!

E.N.Saridakis – VIA web lecture, Feb 2014

top related