today’s outline - november 16, 2016csrri.iit.edu/~segre/phys405/16f/lecture_22.pdf · today’s...

Post on 21-Jun-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Today’s Outline - November 16, 2016

• Fermi energy

• Band theory

• Dirac comb

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 21, 2016

Homework Assignment #11:Chapter 5:6,9,12,13,32,33due Monday, November 28, 2016

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 1 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx,

ky =nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly,

kz =nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Reciprocal space

The energy of the 3-D states is

with

kx =nxπ

lx, ky =

nyπ

ly, kz =

nzπ

lz

Enxnynz =~2π2

2m

(n2xl2x

+n2yl2y

+n2zl2z

)

=~2k2x2m

+~2k2y2m

+~2k2z2m

these discrete values of kx ,ky , kz form a lattice calledthe reciprocal lattice.

each point is a discrete singleparticle state

kx

ky

kz

1lx

1ly

1lz

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 2 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state.

As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)

kF =(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)

kF =(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3

EF =~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3

EF =~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Fermi level

Since electrons are fermions, only two (spin up and spin down) can occupyeach single particle state. As we fill states starting with the lowestenergies, the occupied states begin to fill an octant of a sphere in k-space.

The radius of this sphere is calledkF and the volume of the octant isgiven by

defining ρ = Nq/V as the densityof free electrons per unit volume,we have

kF defines the Fermi surface andthe corresponding Fermi energy isgiven by

1

8

(4

3πk3F

)=

Nq

2

(π3

V

)kF =

(3ρπ2

)1/3EF =

~2

2m

(3ρπ2

)2/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 3 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2

[12πk2dk]

(π3/V )

=V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2[12πk2dk]

(π3/V )

=V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Energy of a Fermi shell

We may now calculate the total en-ergy of the electron gas by consider-ing a shell of this octant with thick-ness dk

the volume of the shell is

18(4πk2)dk = 1

2πk2dk

the number of states in the shell isthen

since each state has an energy~2k2/2m, the total energy of thestates in the shell is

k

k

k z

y

x

k

dk

2[12πk2dk]

(π3/V )=

V

π2k2dk

dE =~2k4

2m

V

π2dk

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 4 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk

=~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk

=~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V

= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V= dW

= PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V

=2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Total energy of the gas

The total energy of the gas is therefore given by integrating dE out to theFermi wavenumber

Etot =~2V

2π2m

∫ kF

0k4dk =

~2k5FV10π2m

=~2(3π2Nq)5/3

10π2mV−2/3

If we now look at how the total energy depends on a small change of thevolume of the solid

dEtot

dV= −2

3

~2(3π2Nq)5/3

10π2mV−5/3

dEtot = −2

3Etot

dV

V= dW = PdV

this is equivalent to a pressure ex-erted by the gas which does workand changes the energy of the gas

P = −2

3

Etot

V=

2

3

~2k5F10π2m

=(3π2)2/3~2

5mρ5/3

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 5 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Band theory

A better model is one which includes the periodic potential of the positiveions in a solid.

This can be demonstrated by asimple 1-D model called the Diraccomb but is generalizable to anypotential with the same mathemat-ical characteristics.

The Dirac comb is a periodic po-tential, that is

where a is the distance between therepeating potential features

we can define an operator D, calledthe displacement operator, whichdescribes the translational symme-try of the potential

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

V (x + a) = V (x)

H = − ~2

2m

d2

dx2+ V (x)

D f (x) = f (x + a)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 6 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) =

D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) =

D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) =

D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) =

D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)

−(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)

−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)−(− ~2

2mf ′′(x + a) + V (x)f (x + a)

)

= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)

= 0

but since V (x + a) = V (x)

, H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Properties of the displacement operator

The solution to the Dirac comb must be an eigenfunction of theHamiltonian but how will it transform under the displacement operator?

To determine this, let’s compute the commutator of D and H,[D,H] = DH − HD

[D,H] f (x) = D

(− ~2

2m

d2

dx2+ V (x)

)f (x)−

(− ~2

2m

d2

dx2+ V (x)

)Df (x)

= D

(− ~2

2mf ′′(x) + V (x)f (x)

)−(− ~2

2m

d2

dx2+ V (x)

)f (x + a)

=

(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)−(− ~2

2mf ′′(x + a) + V (x + a)f (x + a)

)= 0

but since V (x + a) = V (x), H and D commute and we can havesimultaneous eigenfunctions of both operators

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 7 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Bloch functions

The eigenvalue equation for the displace-ment operator is thus

since λ cannot be zero, it must be a com-plex number which can expressed as aphasor

we thus have a condition on the wave-function in a periodic potential

resulting in Bloch’s theorem

Dψ(x) = λψ(x)

ψ(x + a) = λψ(x)

λ = e iKa

ψ(x + a)= e iKaψ(x)

Bloch’s theorem only applies to an infintely repeating potential and ourgoal is to model a macroscopic crystal so the number of repeating units ofthe potential is of the order of 1010

by assuming that the edges of the solid are always far away, and applyingperiodic boundary conditions, Bloch’s theorem can be made applicable tothe Dirac comb and other models of solids

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 8 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Periodic boundary conditions

Take N to be the number of “atoms” in the system

wrap the end of the comb back to thestart to get a periodic boundary con-dition

this is just applying the displacementoperator N times and getting, byBloch’s theorem

leading to quantization of the factorK , which is clearly similar to the wavenumber in the free electron gas model

ψ(x + Na) = ψ(x)

e iNKaψ(x) = ψ(x)

e iNKa = 1

NKa = 2πn

K =2πn

Na, (n = 0,±1,±2, . . . )

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 9 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na)

= e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na)

= e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions

, where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions

, where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we have

defining k =√

2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we have

defining k =√

2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb problem

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we havedefining k =

√2mE/~, gives

x-3a 0-2a-4a -a 2a 4a3aa

V(x)

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = α

N−1∑j=0

δ(x − ja)

Eψ = − ~2

2m

d2ψ

dx2

d2ψ

dx2= −k2ψ

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 10 / 14

Dirac comb solution

The general solution is one we have seen already

and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already

and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B

= e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA

− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)]

= B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation

, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation

, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)

− e−iKak[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka)

+ e−iKak sin(ka) =2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka)

=2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

The general solution is one we have seen already and in the cellimmediately preceeding the origin, we can write the solution using Bloch’stheorem

ψ(x)= A sin(kx) + B cos(kx), (0 < x < a)

ψ(x)= e−iKa [A sin k(x + a) + B cos k(x + a)], (−a < x < 0)

continuity at x = 0 gives

while there is a discontinu-ity in the derivative

rearranging the continuityequation, substituting for A,and cancelling B

B = e−iKa [A sin(ka) + B cos(ka)]

kA− e−iKak [A cos(ka)− B sin(ka)] = B2mα

~2

A sin(ka) = B[e iKa − cos(ka)

]

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 11 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)

− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka)

+ e−iKa cos2(ka) + e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka)

+ e−iKa sin2(ka)

=2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa

− 2 cos(ka) + e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka)

+ e−iKa

=2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)

− 2 cos(ka)

=2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify

cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) =

cos(z) + βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) = cos(z)

+ βsin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) = cos(z) + β

sin(z)

z

= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

k[e iKa − cos(ka)]

sin(ka)− e−iKak

[e iKa − cos(ka)]

sin(ka)cos(ka) + e−iKak sin(ka) =

2mα

~2

[e iKa − cos(ka)][1− e−iKa cos(ka)] + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − cos(ka)− cos(ka) + e−iKa cos2(ka) + e−iKa sin2(ka) =2mα

~2ksin(ka)

e iKa − 2 cos(ka) + e−iKa =2mα

~2ksin(ka)

2 cos(Ka)− 2 cos(ka) =2mα

~2ksin(ka)

cos(Ka) = cos(ka) +mα

~2ksin(ka)

letting z ≡ ka and β = mαa/~2 wesimplify cos(Ka) = cos(z) + β

sin(z)

z= f (z)

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 12 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Dirac comb solution

cos(Ka) = cos(z) + βsin(z)

z

-1

0

+1

0 π 2π 3π 4π

f(z)

z

Since | cos(Ka)|≤1, the shaded re-gions contain the only valid solu-tions and are called “bands”

the “gaps” are forbidden energies,whose values of k are not allowed

since K = 2πn/Na is quantized(n = 0,±1,±2, . . . ), so are k andE in the allowed intervals

there are N allowed states in eachband but the the energies are nearlycontinuous since N is very large

the bands and gaps are able to ex-plain the properties of metals, semi-conductors and insulators in a sim-ple way

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 13 / 14

Types of solidsE

k

Plotting these “bands” on an energy plotshows that there are 2N closely spacedstates in each of the shaded regions sepa-rated by “gaps” where there are no avail-able states.

The low-lying states are localized in en-ergy, higher states are more spread out.

If a material has an even number of elec-trons per atom, then the topmost bandwith electrons is completely filled, givingan insulator.

If a material is made up of atoms whichhave an odd number of electrons, the top-most band with electrons is half filled, giv-ing a metal.

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 14 / 14

Types of solidsE

k

Plotting these “bands” on an energy plotshows that there are 2N closely spacedstates in each of the shaded regions sepa-rated by “gaps” where there are no avail-able states.

The low-lying states are localized in en-ergy, higher states are more spread out.

If a material has an even number of elec-trons per atom, then the topmost bandwith electrons is completely filled, givingan insulator.

If a material is made up of atoms whichhave an odd number of electrons, the top-most band with electrons is half filled, giv-ing a metal.

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 14 / 14

Types of solidsE

k

Plotting these “bands” on an energy plotshows that there are 2N closely spacedstates in each of the shaded regions sepa-rated by “gaps” where there are no avail-able states.

The low-lying states are localized in en-ergy, higher states are more spread out.

If a material has an even number of elec-trons per atom, then the topmost bandwith electrons is completely filled, givingan insulator.

If a material is made up of atoms whichhave an odd number of electrons, the top-most band with electrons is half filled, giv-ing a metal.

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 14 / 14

Types of solidsE

k

Plotting these “bands” on an energy plotshows that there are 2N closely spacedstates in each of the shaded regions sepa-rated by “gaps” where there are no avail-able states.

The low-lying states are localized in en-ergy, higher states are more spread out.

If a material has an even number of elec-trons per atom, then the topmost bandwith electrons is completely filled, givingan insulator.

If a material is made up of atoms whichhave an odd number of electrons, the top-most band with electrons is half filled, giv-ing a metal.

C. Segre (IIT) PHYS 405 - Fall 2015 November 18, 2015 14 / 14

top related