the most important industrial sectors: lime&cement … · world lime production was 350 mt in...

Post on 13-Jun-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

THE MOST IMPORTANT INDUSTRIAL

SECTORS: LIME&CEMENT AND

IRON&STEEL

24-25.1.20177th RESEARCHERS’ SEMINAR

Eemeli Tsupari, VTTMarkus Hurskainen, VTT

Why focus on cement/lime and steel?Industrial Direct CO2 Emissions by Sector, 2007

• PV and wind power are ”easy” solutions to decarbonise the powersector

• The challenge is in industrial emissions and transportation

• Globally >50% of industrial CO2emitted from two sectors

• Often said that CCS is the only option• This is NOT true!

Data: IEA Energy technology perspectives 2010Fig: Reducing CO2 emissions from heavy industry 2012

Cement 26%

Iron & steel30%

1. LIME

How is lime made?

CaCO3 + heat CaO + CO2Typically at 900-1200°C Heat provided by direct contact with hot flue gases

Theoretical heat demand 3.18 GJ/t of quicklime (CaO)

EU average 4.25 GJ/t CaO

Fig: EuLA. A Competitive and Efficient Lime Industry – Summary

JRC (2013). BAT BREF

World lime production was 350 Mt in 2015

- China produces ~2/3 of the total lime

- The EU ~20 Mt (6% of total)

- Production has increased only slightlyduring last 10 years

Sources: International Lime Association (ILA) & U.S. Geological Survey& EuLA Activity Report 2015

CO2 emissions from limekilns globally

The estimated CO2 emissions from lime production are around 450 Mt/a.• This corresponds to ~1.2% of total

man-made CO2 emissions.

• ..or around 10 times the annual CO2emissions from the energy & industry sectors in Finland.

Around two thirds of CO2 originatefrom limestone

Fig: EuLA. A Competitive and Efficient Lime Industry – Summary

Distribution of CO2 emissions from lime kilns in the EU

Fuels used in lime kilns in the EU in 2010

Total fuel use ~90 PJ (25 TWh)(assuming 4.25 GJ/t CaO and 21 Mt/a lime production)

In China, coal is by far the most used fuel.

Source: EuLA. A Competitive and Efficient Lime Industry – Summary

Sources of information

European Lime Association, http://www.eula.eu/EuLA (2014). A Competitive and Efficient Lime Industry - Technical report by Ecofys, http://www.eula.eu/file/477/download?token=G4HAme1uEuLA (201x). A Competitive and Efficient Lime Industry – Summary, http://www.eula.eu/file/475/download?token=5lpX8a3hEuLA (2016). Activity Report 2015-2016, http://www.eula.eu/file/581/download?token=H1P7f8uh

International Lime Association (ILA) http://www.internationallime.org/home/

U.S. Geological Survey lime production statistics https://minerals.usgs.gov/minerals/pubs/commodity/lime/index.html#myb

JRC (2013). Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, http://eippcb.jrc.ec.europa.eu/reference/BREF/CLM_Published_def.pdf

2. CEMENT

Production of cement

The main raw materials for cement are limestone, sand, clay, (ashes)

1. Decomposition of CaCO3 at about 900 °C to CaO and CO2

2. Clinkering process in which the calcium oxide reacts at~1 400–1 500°C with sand and clay to form the silicates, aluminates, and ferrites of calcium

3. The clinker is then cooled rapidly, ground or milled together with gypsum and other additives to obtain cement.

Composition of grey cement

Total world cement production 4 600 Mt in 2015

Source CEMBUREAU (2016). Activity Report 2015.

• Total production one magnitude higher than lime

• Rapid increase in developing countries

CO2 emissions from cement production

• Ca. 55% of the emissions are process emissions (from CaCO3), 35% comes from the burning of the fuels to heat the kiln, and ca. 10% comes from electricity use and transportation.

• The total CO2 emissions are estimated to be around ~3 Gt/a, which equals to ~8% of total man-made emissions.• By extrapolating from the CSI GNR data* (which covers 21% of world’s cement

production)

55%35%

10%

CO2 emissions from cement production

Process

Fuel

Electricity

Sources: *Cement Sustainability Initiative - Getting Numbers Right databasehttp://www.wbcsdcement.org/GNR-2014/index.html

Fuels used in cement kilns in 2012 (and prediction for 2025)

• Coal is the most common fuel especially in non-OECD countries• Share of bio/waste fuels is expected to increase

Source: IEA Tracking Clean Energy Progress 2015

Sources of information

The European Cement Association (CEMBUREAU) http://www.cembureau.be/

CEMBUREAU (2016). Activity Report 2015, http://www.cembureau.eu/2015-activity-report

CEMBUREAU (2013).The role of cement in the 2050 low carbon economy, http://lowcarboneconomy.cembureau.eu/uploads/Modules/Documents/cembureau-brochure.pdf

CEMBUREAU (201x). Cement for low-carbon Europe through clinker substitution http://www.cembureau.be/sites/default/files/documents/Cement%20for%20low-carbon%20Europe%20through%20clinker%20substitution.pdf

The Cement Sustainability Initiative, http://www.wbcsdcement.org/index.php

”Getting numbers right” http://www.wbcsdcement.org/GNR-2014/index.html (Statistics)

JRC (2013). Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, http://eippcb.jrc.ec.europa.eu/reference/BREF/CLM_Published_def.pdf

NEOCARBON SOLUTIONFOR LIME & CEMENT?

Calcination by renewable electricity

• Indirectly heated calciner using electrical heaters:Replacement of fossil fuels by renewable electricity

• Avoidance of fuel based CO2

• Potential business case if expensive fuels (e.g. oil) are replacedProduction of pure CO2 from CaCO3

• Magnitude ~ 2 times the CO2 needed for aviation fuelsCaO not contaminated by combustion by-products

• Main research questions:– Heat transfer in large scale– End product properties (particle size, reactivity…)– Heat integration

CaCO3

CaO

Pure CO2

Electrical heaters

Heat transfer

Experiments at VTT (CCSP 2016)

• Successful pre-calcination of lime mud (from pulp mill)• Production of 95%..98% pure (biogenic) CO2

• Next: Funding for CFD studies and scale-up

Project LEILAC - Low Emission Intensity Lime and Cement project (Horizon 2020)

• Aims to developed indirectly heated calciner for lime/cement industry

– Pure CO2 stream (possibly with H2O)

• Project commenced on the 1st January 2016 and will run for five years

• HeidelbergCement, Lhoist, Cemex, Tarmac, Calix, AmecFW, ECN…

Should be possible to develop similar indirectly heated calciner using electrical heaters also?

http://www.project-leilac.eu/

IRON AND STEEL

Main processes• Over 99% of global steel production by two process routes

• ~60% by Blast Furnace and Basic Oxygen Furnace (BF+BOF) route• ~40% by Electric Arc Furnace (EAF) route

• EAF route is less C-intensive but limited by the scrap availability• Approximately >80% of CO2 steel sector from BF+BOF• Also EAF processes are significant CO2 sources

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

a.k.a. OBC (Oxygen BlownConverter)

So far, focus on BF processcase example: SSAB’s Raahe steel mill – the largest CO2 point source

in Finland

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

CO2 emissions

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

Power plant

(60% .. ) >70% of CO2 emissions

Hot stoves(a.k.a. ”Cowpers”)

Process gases

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

Power plant

Coke oven gas

Converter gasBF gas

Hot stoves(a.k.a. ”Cowpers”)

Process gases are attractive for synthesis

Source: Arasto, Tsupari, Kärki, Lilja, Sihvonen. Oxygen blast furnace with CO2 capture and storage at an integrated steel mill - Part I: Technical concept analysis. International Journal of Greenhouse Gas Control. Volume 30, November 2014, Pages 140–147

MeOH/electricity = 77%!(56% with CO2 solely)

25.1.2017 25

Research for large CO2 reductions

www.neocarbonenergy.fi

https://www.sintef.no/globalassets/sintef-energi/nordiccs/d4.2.1501-d18-co2-capture-cases.pdf

http://www.vtt.fi/inf/pdf/science/2015/S111.pdf

https://www.fimecc.com/programs/simp

The options studied in other projects

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

Power plant

(60% .. ) >70% of CO2 emissions

PC CCS

VPSA

CO2 transport and storage

Biomass

GTCCPre-comb.

capture

Case 1: ”PC CCS”Case 2: ”OBF” *

Case 3: ”OBF+CCS”Case 4: ”GTCC”

Case 5: ”GTCC+CCS”Case 6: ”Biomass”

STEEL MILL STUDIES IN NEOCARBON

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

Electrolysis

O2 utilisationneed for high purity O2in BOF• O2 consumed also in BF

Synthesis

Process gases including H2 and COCoke oven gas & converter gas(also blast furnace gas, if upgraded)

Steam to mill’ssteam network

SNG /methanol /gasoline /ethanol

H2

Power-to-fuels from converter gas

10% PCC + PtMeOH

Original figure: http://www.worldcoal.org/coal/uses-of-coal/coal-steel/

Power plant

Steam

PCC PtX

O2

Resultsdefault valuesCO2

€/t80 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##77 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##74 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##71 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##68 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##65 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##62 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##59 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##56 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##53 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##50 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##47 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##44 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##41 ## ## ## ## ## ## ## ## ## ## ## -9 -6 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -7 -7 -8 -9 ## ## ## ## ##38 ## ## ## ## ## ## ## ## ## ## -7 -4 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##35 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##32 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##29 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##26 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##23 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##20 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##17 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##14 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##11 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##

8 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##5 ## ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -1 -1 -1 0 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -7 -8 -9 ## ## ## ## ##

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80Sähkön hinta (sis. siirto ja netto verot), €/MWh

10%PCC+MeOH

OBF+CCS

OBF

PtMeOH fromconverter gas

GTCC+CCS

GTCC

Reference

Note: Long term study. Some improvements to Raahe steelmill’s existing process are assumed also for the reference case

CO2€/t

80 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##77 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##74 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##71 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##68 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##65 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##62 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##59 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##56 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##53 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## -8 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##50 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## -7 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##47 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## -9 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##44 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## -8 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##41 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## -9 -6 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##38 ## ## ## ## ## ## ## ## ## ## ## ## ## ## -8 -5 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##35 ## ## ## ## ## ## ## ## ## ## ## ## ## -7 -4 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##32 ## ## ## ## ## ## ## ## ## ## ## -9 -6 -3 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##29 ## ## ## ## ## ## ## ## ## ## -8 -5 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##26 ## ## ## ## ## ## ## ## ## -7 -4 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##23 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##20 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##17 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##14 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##11 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##

8 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##5 ## ## ## ## ## ## ## ## -9 -6 -2 -2 -2 -2 -1 -2 -3 -4 -5 -6 -6 -7 -8 -9 ## ## ## ## ## ## ## ## ## ## ## ##

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80Sähkön hinta (sis. siirto ja netto verot), €/MWh

Resultshigher coke price and CO2 trans.&stor.cost

10%PCC+MeOH

OBF+CCS

OBF

PtMeOH fromconverter gas

GTCC+CCS

GTCC

Note: Long term study. Some improvements to Raahe steelmill’s existing process are assumed also for the reference case

NEXT

CO2 free steel mill

http://carbonmarketwatch.org/wp-content/uploads/2016/04/SSAB-HYBRIT-A-Swedish-prefeasibility-study-project-for-hydrogen-based-CO2-free-ironmaking.pdf

Discussion and conclusions

• Lime, cement and steel are the most important industrial sectors in terms of global CO2 emissions

• Limestone calcination reaction can be directly electrified

• There are several attractive integration opportunities for PtX processes with different steel making processes

– High efficiency with converter gases– In addition, direct reduction by hydrogen is possible!

top related