tevatron top physics

Post on 31-Dec-2015

24 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Tevatron Top Physics. Meenakshi Narain Brown University (for the D0 and CDF collaborations). Fermilab User’s Meeting – June 4, 2008. 13 years ago… …we observed a few handfuls of top quark decays. today… …we are performing detailed studies of 1000s of top decays. top at Fermilab. - PowerPoint PPT Presentation

TRANSCRIPT

Tevatron Top Physics

Meenakshi Narain

Brown University(for the D0 and CDF collaborations)

Fermilab User’s Meeting – June 4, 2008

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 2

top at Fermilab• 13 years ago…

…we observed a few handfuls of top quark decays

• today…

…we are performing detailed studies of 1000s of top decays

4.2 fb-1

3.7 fb-1

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 3

outline• strong production

– cross section– branching fractions

• mass• couplings

• new physics?– FCNC decays– tt resonances– tb resonances– H+

– ….

• electroweak production– |Vtb|

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 4

W W

t

b

W W

H0

mtop2

log(mH)

why is the top quark important?• most massive elementary particle

– dominant contributor to radiative corrections

– how is its mass generated?• topcolor?

– does it couple to new physics?• massive G, heavy Z’, H+, …

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 5

top-antitop production • strong interaction top-antitop pairs

= 7.6±0.6 pb (Kidonakis & Vogt, arXiv:0805.3844)• mt = 171 GeV, NNLO(approx)+NNNLL, CTEQ6M

= 7.6 ±0.6 pb (Cacciari et al., arXiv:0804.2800) • mt = 171 GeV, NLO+NLL, CTEQ6.5

= 7.8 ±0.6 pb (Moch & Uwer, arXiv:0804.1476) • mt = 171 GeV, NNLO(approx.), CTEQ6.5

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 6

standard model top decay• tWb with B ≈ 100%

– Wqq with B ≈ 67 %– Wℓ with B ≈ 11%

e with B ≈ 17 %

• final state signatures for top-antitop pairs

• b-tagging

dileptons6%had+e/μ

4%

lepton+jets34%

had+jets10%

all jets46%

primaryvertex

secondary vertex

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 7

dileptons lepton+jets

why measure the ttbar cross section?• cross section analysis

– basic understanding of signal and background necessary for further study

– consistency between channels– decay branching fractions– are there non-standard decays?

B(tH+b) = 0 B(tH+b) = 0.1 B(tH+b) = 0.2 B(tH+b) = 0.3 B(tH+b) = 0.4 B(tH+b) = 0.5 B(tH+b) = 0.6 all jets

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 8

ttbar cross section in dilepton channel• characteristics

– small branching fraction– two neutrinos– kinematically underconstrained + signal:background = 3:1

• selection– two isolated leptons/lepton+track 2 jets

– missing pT

– Z rejection in ee/ channels

Dilepton(BR~6%)

e,

b-jet

e,

b-jet

miss pT

Dilepton(BR~6%)

e,

b-jet

e,

b-jet

e,

b-jet

e,

b-jet

miss pT

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 9

ttbar cross section in dilepton channel• CDF (2 fb-1)

– b-tag = 9.0±1.1(stat)±0.7(syst)±0.5(lum) pb

– no b-tag = 6.8±1.0(stat)±0.4(syst)±0.4(lum) pb

• D0 (1 fb-1)– dileptons

= 6.8+1.2-1.1(stat)+0.9

-0.8(syst)0.4(lum) pb

– lepton+track = 5.1+1.6

-1.4(stat)+0.9-0.8(syst)0.3(lum) pb

– combined = 6.2 0.9(stat) +0.8

-0.7(syst)0.4(lum) pb

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 10

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 11

ttbar cross section in channels• interesting because of

tH+b, H+• 3 types of hadronic decays

• require– 1 , 1 e/, ≥2 jets, missing pT

– 1 jet is b-tagged

• neural networks distinguish decays from background

1 trackno em cluster12%

1 trackem cluster38%

≥2 tracks15%

= 7.4+1.4–1.3(stat)+1.2

–1.1(syst)±0.4(lum) pb (2.2 fb-1)

B(ttl) = 0.190.08(stat)0.07(syst)0.01(lum) pb (1 fb-1)

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 12

ttbar cross section in all-jets channel• characteristics

+ large branching fraction+ no neutrinos+ complete reconstruction– signal:background 1:16

• selection– 6-8 well separated jets– no significant miss pT

– at least one b-tag– neural network

ET, event shape, angles

• backgrounds– pretag data x tagging

probability from 4-jet control region

jet

b-jetb-jet

jet

jet jet

All-hadronic(BR≈46%)

= 8.3±1.0(stat)+2.0-1.5(syst)±0.5(lum) pb

1 fb-1

CDF PRD 76 072009

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 13

ttbar cross section in l+jets channel• characteristics

– large branching fraction– one neutrino– kinematically overconstrained – signal:background = 1:2, 2:1(b-tag)

• selection– one isolated lepton – 4 jets – missing pT jet

e,

b-jet

b-jet

jet

Lepton+jets(BR~34%)

MET

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 14

ttbar cross section in l+jets channel• extract top fraction using event topology

– angles, momentum sums, and event shape variables– dominated by statistical uncertainties

D0 (0.9 fb-1) likelihood discriminant=6.60.8(stat)0.4(syst)0.4(lum) pb

CDF (0.8 fb-1)neural network=6.00.6(stat)0.9(syst)0.3(lum) pb

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 15

ttbar cross section in l+jets channel• count number of events with at least one b-tagged jet

– smaller statistical uncertainty– large systematic uncertainty from jet energy calibration and b-tagging

D0 (0.9 fb-1)

=8.1±0.5(stat)±0.7(syst)±0.5(lum) pb

CDF (2 fb-1)

=8.2±0.5(stat)±0.8(syst)±0.5(lum) pb=8.7±1.1(stat)+0.9

-0.8(syst)±0.6(lum) pb=7.8±2.4(stat)±1.5(syst)±0.5(lumi) pb

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 16

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 17

implications of cross section• compare different channels

– B(tWb)>0.79 @ 95% CL– B(tH+b)<0.35 @ 95% CL

for mH+ = mW and H+cs

• compare with theory– combine likelihood and b-tag

cross section measurements

– σtt = 7.62 ± 0.85 pb

for mtop = 172.6 GeV

– mt = 170 ± 7 GeV

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 18

single top production• electroweak production of top quarks

─ s channel (tb) ─ t channel (tqb)

– event selection• 1 isolated e/

• missing pT

• 2-4 jets, ≥1 b-tag

NLO = 0.9±0.1 pb = 2.0±0.3 pb PRD70 (2004) 114012

event yields (CDF 2.2 fb-1)

Njets 2 3

single top 103 32

backgrounds 1492 745

data 1535 712

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 19

single top production• D0 results (0.9 fb-1)

• CDF results (2.2 fb-1)

= 4.7 ± 1.3 pbsignificance: 2.3 σ (expected)significance: 3.6 σ (observed)PRL 98, 181802 (2007) PRD (accepted)

= 2.2 ± 0.7 pbsignificance: 5.1 σ (expected)significance: 3.7 σ (observed)

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 20

single top production• measure |Vtb| from total cross section

– D0: |Vtb|>0.68 @ 95% CL CDF: |Vtb|>0.66 @ 95% CL

• disentangle s and t channels

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 21

top mass measurement• template fits

– mass estimator (eg best mt from kinematic fitter)

– fit probability density functions from simulated tt events generated to data

• event-by-event likelihood – for each event determine

likelihood as a function of mt (eg by integrating over LO matrix element)

– extract mass from peak of joint likelihood

Event 3Event 2Event 1

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 22

dilepton channel • D0 (1 fb-1)

– compute weight curve as a function of top mass for each event

– template fit to mass distribution

• CDF (2 fb-1)– selection uses evolutionary

neural network that optimizes resolution

– compute event weight using LO matrix element

matrix weighting

173.7±5.4(stat)±3.4(syst) GeV 171.2±2.7(stat)±2.9(syst) GeV

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 23

lepton+jets• matrix element analysis

– integrate over LO matrix element to get likelihood for event as a function of top quark mass

– in situ jet energy calibration using Wqq decay – peak of joint likelihood = top quark mass

– CDF: 171.4±1.5(statjes)±1.0(syst) GeV (1.9 fb-1) – D0: 172.2±1.1(stat)±1.6(systjes) GeV (2.1 fb-1)

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 24

all jets (CDF)• kinematic fitter

– leading 6 jets

– jj/jjj masses, jet pTs

• 2-dimensional template fit– top/W masses with smallest 2

jet

b-jetb-jet

jet

jet jet

mtop = 177.0 ± 3.7(statjes) ± 1.6(syst) GeV

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 25

combination

http://tevewwg.fnal.gov/top/http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2008/

for the first time m/m<1% Run II goal: m 1 GeV

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 26

top quark couplings• if top plays a special role in ewk symmetry breaking its

couplings to W bosons may differ from predictions

• sm predicts V-A coupling at Wtb helicity of W boson– F0 = 0.7, F = 0.3, F+ = 0.0

(longitudinal, left-handed, right-handed)– different distributions of *

angle between lepton and top in W rest frame

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 27

top quark couplings• D0 (1 fb-1)

F0 = 0.42 0.17(stat) 0.10(sys)

F+= 0.12 0.09(stat) 0.05(sys)

• CDF (1.9 fb-1)

Phys Rev Lett 100, 062004 (2008)

68% CL95% CL

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 28

searches for non-standard physics• quarks with charge 4/3e • FB ttbar asymmetry • 4th generation t’ quarks • scalar top production • charged Higgs bosons• tb resonances • ttbar resonances• FCNC decays of top quarks

disfavored

consistent with sm

m > 284 GeVno evidence limits on H+ tb,tH+b

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 29

tb resonances• vector resonance: W’tb• left-handed couplings

– DØ include interference with SM W

• right-handed couplings – decay to Rl/qq, depending on m(R)

• lower limits on MW’: 731-825 GeV

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 30

tt resonances • D0 (2.1 fb-1)

– technicolor Z’ttHill & Parke, PRD 49 (1994) 4454)

• CDF (1.9 fb-1)– massive gluon Gtt

MZ’>760 GeV

for Z’/MZ’ =1.2%

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 31

FCNC decays of top quarks• flavor changing neutral currents

– highly suppressed in sm– select Z(ee/) + ≥4 jets

– fit to

B(tZq) < 3.7% @ 95% CL

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 32

conclusion• top physics has come a long way since 1995

– Tevatron is still the only place to do it– ttbar cross section measured to 11%– evidence for single top production

• 5 this summer?

– top quark mass measured to 0.8%• will reach uncertainties below 1 GeV

– top properties and possible non-standard physics studies in great detail

– in the last year: D0 7 papers and 13 theses– in the last year: CDF 8 papers and 16 theses

• it still looks like top

http://www-d0.fnal.gov/Run2Physics/top/http://www-cdf.fnal.gov/physics/new/top/top.html

thank you

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 34

charged Higgs bosons• MH+> mt H+ tb

• tb resonance

• MH+< mt t H+b

• H+cs

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 35

top quark charge• is it

– tW+b (Qtop = 2/3 e)– tW-b (Qtop = -4/3 e)

• Exotic model – doublet (–1/3e,–4/3e) ?– D. Chang et al., PRD59 (1999) 091503

• D0 PRL 98, 041801 (2007) – 4/3e excluded at 92% CL– fraction of exotic quark pairs

< 0.80  (90% CL)

• CDF result with 1.5/fb– p-value for SM: 0.31– exotic model XM excluded with

87% CL

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 36

FB charge asymmetry • Asymmetry:

– LO – no asymmetry– NLO – small (3-5%) asymmetry predicted in sm– new physics could lead to larger values (eg Z’)

Phys. Rev. Lett. 100, 142002 (2008)

D0 AFB in parton rest frame:AFB = 0.12±0.08(stat)±0.01(syst)consistent with sm expectation

CDF unfold reconstructed AFB to go to parton levelAFB

pp = 0.17± 0.07(stat) ± 0.04(syst)

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 37

t’ quark• 4th generation heavy quark

– pair-produced via strong interaction– more massive than top– decays to Wb, Ws, Wd

Mt’ < 284GeV at 95%C.L.

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 38

mass syst• CDF dilepton l+jets

6/4/2008 Meenakshi Narain - Fermilab User's Meeting 39

xsec syst

source uncertainty

vertex 0.15 pb

e id 0.11 pb

μ id 0.08 pb

jet id 0.12 pb

non-W bkg 0.06 pb

jet response 0.30 pb

MC model 0.29 pb

b-tagging efficiency 0.48 pb

total 0.69 pb

source selection fit total

vertex 0.13 pb 0.13 pb

e id 0.10 pb 0.10 pb

μ id 0.06 pb 0.06 pb

jet id 0.10 pb 0.02 pb 0.12 pb

non-W bkg 0.10 pb 0.10 pb

jet response 0.35 pb 0.26 pb 0.11 pb

MC model 0.13 pb 0.09 pb 0.11 pb

template stats 0.15 pb 0.15 pb

total 0.36 pb

D0 l+jets b-tag kinematic likelihood

top related