technology challenges for rf guns as erl sources · erl workshop 2005 d.h. dowell...

Post on 19-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Technology Challenges for RF Guns as ERL Sources

David H. DowellStanford Linear Accelerator Center

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Technical Challenges are Everywhere!

RF GunNCRFSRF

CathodesDrive LaserBunch CompressionBeam Transport

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Basic Layout of ERL Free Electron Laser

2E 0E

Injector

Undulator

Einj ≈ 10 MeV ∆ ≈ 3 MeVE0 ≈ 100 MeV Edump ≈ 7 MeV

Linac

180o Bend

180o Bend

Einj

Edump

E-beam dump

E0E0 -∆fel

E-gun

Cavity mirror Cavity mirror

Cathode drive-laser

E-Beam make 2 passes thought the linac:1: Acceleration and lasing2: Deceleration and energy recovery

Acc-DecAcc-Dec

∆fel

slice compliments of P. O’Shea, UMd

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Basic Components of the RF Gun Injector

RF Gun ~10 MeV Linac 3rd HarmonicLinearizer

Chicane Compressor Merging

Chicane

Main Linac AxisDrive LaserCathode

System

+ Laser Heater to Suppress Beam Instabilities?

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

The Gun

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

The Boeing 433 MHz RF Photocathode Gun

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Demonstrated Performance of 433 MHz Photocathode Gun, 1992 H-D TestPhotocathode Performance:

Photosensitive Material: K2CsSb MultialkaliQuantum Efficiency: 5% to 12%Peak Current: 45 to 132 amperesCathode Lifetime: 1 to 10 hoursAngle of Incidence: near normal incidence

Gun Parameters:Cathode Gradient: 26 MV/meterCavity Type: Water-cooled copperNumber of cells: 4RF Frequency: 433 x106 HertzFinal Energy: 5 MeV(4-cells)RF Power: 600 x103 WattsDuty Factor: 25%, 30 Hertz and 8.3 ms

Laser Parameters:Micropulse Length: 53 ps, FWHMMicropulse Frequency: 27 x106 HertzMacropulse Length: 10 msMacropulse frequency: 30 HertzWavelength: 527 nmCathode Spot Size: 3-5 mm FWHMTemporal and Transverse Distribution: gaussian, gaussianMicropulse Energy: 0.47 microjouleEnergy Stability: 1% to 5%Pulse-to-pulse separation: 37 nsMicropulse Frequency: 27 x106 Hertz

Gun Performance:Emittance (microns, RMS): 5 to 10 for 1 to 7 nCoulombCharge: 1 to 7 nCoulombEnergy: 5 MeVEnergy Spread: 100 to 150 keV

Applied Physics Letters, 63 (15), 11 October 1993, pp. 2035-2037.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Normal-Conducting RF Photoinjector

Ridged tapered waveguidesfor RF power input

Cooling

Photocathode plate

2.5-cell PI with emittance-compensating magnets (left) and vacuum plenum (right)

complements of D. Nguyen, LANL

RF Photoinjector Summary

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

RF Fields Should be Fully Symmetric

Coaxial RF Feed

DESY TTFII RF Gun2004 FEL Proceedings

-6-4-202468

-180 -130 -80 -30 20 70 120 170

rf phase (degree)

cylindrical cavity (lc=2.475cm)

racetrack cavity (lc=2.413cm)with d=0.315cmracetrack cavity (lc=2.413cm)with d=0.356cm

Qua

drup

ole ∆(γβ)

r(1

/m)

-8-6-4-202468

-180 -130 -80 -30 20 70 120 170-180 -130 -80 -30 20 70 120 170

rf phase (degree)

cylindrical cavity (lc=2.475cm)

racetrack cavity (lc=2.413cm)with d=0.315cmracetrack cavity (lc=2.413cm)with d=0.356cm

Qua

drup

ole ∆(γβ)

r(1

/m)

-8

d

rr

d

rrDual Feed &

Racetrack Shape

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

LCLS Gun Design

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Rossendorf SRF Guns

Original 1-Cell Design

New 3 ½ Cell Design

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Cryomodule Configuration

Cathode isolationValve

Cathode installationassembly

Beam lineisolation valve

Top cover withfacilities feedthru

Cavityassembly

InternalHelium dewar

Adjustable supports

Magnetic and thermalshielding Beam tube with

HOM RF pickup

Vacuum vessel

Powercouplers

slide compliments of A. Todd

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

The “LUX” GunPremise:

Cavity shaping leads to higher impedance and lower thermal loads and stress => can perhaps use OFHC copper instead of Glidcop

Material Courtesy Robert Rimmer

Projected CW fields are

20 / 13 /13 MV/m

slice compliments of A. Todd, AES

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Two-Frequency Gun with Emittance Compensation

0 100 200 300 400 5000

0.5

1

1.5

2

2.5

3

z (cm)Tran

sver

se E

mitt

ance

(mm

-mra

d) &

rms

radi

us (m

m) Time Step RMS-emittance vs Z (1 nC, 30ps, rc = 1mm

Transverse emittancerms radius

Elinac = 19 MV/mE beam =62 MeV

Solenoid = 2080 G.E0=106 MV/m, φ0=50 degE3=16 MV/m, φ3 = 1.7 deg

125 cm S-Band TW Section

-20 -15 -10 -5 0 5 10 150

0.2

0.4

0.6

0.8

1

Phase

Slic

e Em

ittan

ce (m

m-m

rad)

Slice Emittance (1 nC, 30ps, rc = 1mm)

z=15cmz=125cmz=450cm

D. Jansen suggests using the harmonic TE-mode to magnetically focus in SRF gun2003 FEL Conference Proceedings

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Photocathodes

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

VacuumValve

Connectionto GunCavity

QE MeasurementLaser (GreNe)

RGA Head

Thin Film Monitor

Sb, K, CsSources

N2Inlet/Outlet

02468

10121416

6/12

/95

7/12

/95

10/2

4/95

11/1

4/95

12/1

3/95

1/3/

961/

23/9

62/

1/96

2/13

/96

2/28

/96

3/19

/96

5/2/

965/

14/9

65/

23/9

66/

3/96

Fabrication Date

Qua

ntum

Eff

icie

ncy

(%)

Nuclear Instruments and Methods, A356(1995) pp. 167-176.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Cat

hode

Tem

pera

ture

(deg

rees

C)

0

1

2

3

4

5

6

Qua

ntum

Effi

cien

cy (%

)

Temperature

Quantum Efficiency

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Cat

hode

Tem

pera

ture

(deg

rees

C)

0

1

2

3

4

5

6

Qua

ntum

Effi

cien

cy (%

)

Temperature

Quantum Efficiency

5.50%

6.00%

6.50%

7.00%

7.50%

8.00%

0 20 40 60 80 100 120 140

Time (Minutes)

Qua

ntum

Effi

cien

cy (%

)

0

20

40

60

80

100

120

140

Cat

hode

Tem

pera

ture

(deg

rees

C)

Temperature

Quantum Efficiency

5.50%

6.00%

6.50%

7.00%

7.50%

8.00%

0 20 40 60 80 100 120 140

Time (Minutes)

Qua

ntum

Effi

cien

cy (%

)

0

20

40

60

80

100

120

140

Cat

hode

Tem

pera

ture

(deg

rees

C)

Temperature

Quantum Efficiency

Nuclear Instruments and Methods, A356(1995) pp. 167-176.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Advanced Diamond Amplified Cathode Being Developed at BNL

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

LCLS QESpecification2x10-5 @255nm

After H-beam cleaning 1.2x10-4

1H: 15 min, 0.7uA

4H: 60 min, 2uA

2H: 60 min, 0.4uA

3H: 40 min, 0.4uAInitial Baked:

230 deg

LCLS QESpecification2x10-5 @255nm

After H-beam cleaning 1.2x10-4

1H: 15 min, 0.7uA

4H: 60 min, 2uA

2H: 60 min, 0.4uA

3H: 40 min, 0.4uAInitial Baked:

230 deg1H:

15 min, 0.7uA4H:

60 min, 2uA2H:

60 min, 0.4uA3H:

40 min, 0.4uAInitial Baked:230 deg

In-Situ Hydrogen Beam Cleaning of Cathode Surface

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

The Drive Laser

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

The 25% Duty Factor Drive Laser Used in Boeing/LANLPhotocathode Injector Test*

108 MHz Modelocked Nd:YLF oscillator

54 MHzPockels

Cell

27 MHzPockels

CellFaradayIsolator

LBO Crystal

Nd:YLF Amplifier Heads

OutputPockels

Cell

ToCathode

*D.H. Dowell et al., NIM A356(1995)167-176.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Drive laser should be diode pumped

HR

HR

Collimated 20 WLaser Diode Bars

Nd:YVO4 Slab

slide compliments of M. Shinn

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

New Drive Lasers Should be Shaped Spatially and Temporallyand Fully diode-pumped, fiber oscillator & amplifier

Ti:Sapph Oscillator

Dazzler

Stretcher

Amplifier

Compressor

ω−tripler

800 nm9 nJ100 fsec

5 nJ200-400 psec

25 mJ170-350 psec

15 mJ0.1 - 30 psec

266 nm1.8 mJ

temporal

risetime: 20-80% 2.5 psec10%-90% 4 psec

12.3 psec FWHM

Ti:Sapph OscillatorTi:Sapph Oscillator

DazzlerDazzler

StretcherStretcher

AmplifierAmplifier

CompressorCompressor

ω−triplerω−tripler

800 nm9 nJ100 fsec

5 nJ200-400 psec

25 mJ170-350 psec

15 mJ0.1 - 30 psec

266 nm1.8 mJ

temporaltemporal

risetime: 20-80% 2.5 psec10%-90% 4 psec

12.3 psec FWHM

Courtesy of Yuzhen Shen, Carlo Vicario, B. Sheehy, XJ Wang-10 0 10 20

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (ps)

CrossCorrStreak CamSc'd Spectrum

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Beam Transport(some comments)

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

1300 MHz (third harmonic)energy spectrum programming

for bunch compression

Three dipole magnetic buncherand diagnostics

Linear Bunching for High Peak Current

Proceedings of the 1995 Particle Accelerator Conference, Dallas, TX, USA, pp.992-994.

Nuclear Instruments and Methods, A393(1996)pp. 184-187.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Pulse Compression Boosts Peak Current From 45 to 280 Amperes

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400Time (ps)

Before CompressionAfter Compression

55 ps

9 ps

Nuclear Instruments and Methods, A393(1996)pp. 184-187.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Emittance Compensation in the Three-Dipole Chicane

Adjust path lengths in second and third dipoles

Adjust pole face rotations

30o

60o

30o

-19.5o -19.5o

384 mm 384 mm

Original configurationn = 1/2 dipoles

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Increase path length 4%

Entrance pole angle at -15.6 deg

Compress a 3nC, 1 πmm-mrad microbunch from 7.5mm (50amps) to 0.39mm (1000amps). The emittance is reduced by increasing the third dipole path length 4% and rotating entrance pole face -15.6o. Net bend angle is 1.2o.

2 1 0 1 2

4

2

0

2

2 1 0 1 2

4

-2

0

2

Uncompensated Phase Space Compensated Phase Space

Emittance = 16 π mm-mrad Emittance = 6 π mm-mrad

Div

erge

nce

(mra

d)

Div

erge

nce

(mra

d)

x (mm) x (mm)Proceedings of the 20th International Free-Electron Conference, Williamsburg, VA, USA.

ERL Workshop 2005 D.H. Dowelldowell@slac.stanford.edu

Summary and Discussion•RF guns:

•NCRF under construction by AES for LANL•SRF guns:

•Rossendorf 0.5 cell, Version 1, 1.3 GHz•Rossendorf 3.5 cell, Version 2•BNL/AES 0.5 cell, 700 MHz

•Cathodes: •Requires visible sensitivity•High-QE, Diamond amplified?•Cathode survival at high current, vacuum, etc.•Thermal emittance

•Drive Laser:•3D Pulse shaping required•Direct-diode pumped•Fiber oscillator and amplifiers (future)

•Beam Transport, emittance presevation:•Wakefields, space charge, etc.•Asymmetric bends

top related