symbolic perseus: a generic pomdp algorithm with ...ppoupart/publications/...2 outline • dynamic...

Post on 20-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Symbolic Symbolic PerseusPerseus: : a Generic a Generic POMDP Algorithm with POMDP Algorithm with

Application to Dynamic Pricing Application to Dynamic Pricing with Demand Learningwith Demand Learning

Pascal Poupart (University of Waterloo)

INFORMS 2009

2

OutlineOutline

• Dynamic Pricing as a POMDP• Symbolic Perseus

– Generic POMDP solver– Point-based value iteration– Algebraic decision diagrams

• Experimental evaluation• Conclusion

3

SettingSetting• One or several firms (monopoly or oligopoly)• Fixed capacity and fixed number of selling rounds

(i.e., sale of seasonal items)• Finite range of prices• Unknown and varying demand

• Question: how to dynamically adjust prices to maximize sales?

4

POMDPsPOMDPs Formulation (monopoly)Formulation (monopoly)

Price

CC

Inv

Sales

Price

CC

Inv

Price

CC

Inv

Price

CC

Inv

Sales Sales

Time Time Time Time

Firm

Con

sum

er

5

POMDPsPOMDPs Formulation (oligopoly)Formulation (oligopoly)

Price

CC

Inv

Sales

Price

CC

Inv

Price

CC

Inv

Price

CC

Inv

Price-i Price-i Price-i Price-i

Sales Sales

Inv-i Inv-i Inv-i Inv-i

Time Time Time Time

Firm

Com

petit

ors

Con

sum

er

6

Unknown demand & competitorsUnknown demand & competitors

Price

CC

Inv

Sales

Price

CC

Inv

Price

CC

Inv

Price

CC

Inv

Price-i Price-i Price-i Price-i

Sales Sales

Inv-i Inv-i Inv-i Inv-i

Time Time Time Time

Firm

Com

petit

ors

Con

sum

er

7

Demand ModelDemand Model• Probability that consumer chooses firm i:

Pr(CC=i) = eai+bipi

Σi eai+bipi + 1

• Parameters ai and bi are unknown• Learn them

– From historical data– As process evolves

8

CompetitorsCompetitors• Model each competitor:

– Pricing strategy: inv/time price– Two thresholds: tup and tdown

• If inv/time < tup price↑

• If inv/time > tdown price↓

• Learn thresholds – From historical data– As process evolves

9

Expanded POMDPExpanded POMDP

Price

CC

Inv

Sales

Price

CC

Inv

Price

CC

Inv

Price

CC

Inv

Sales Sales

Firm

Con

sum

er

Price-i Price-i Price-i Price-i

Inv-i Inv-i Inv-i Inv-i

Time Time Time Time

Com

petit

ors

A, B A, B A, B A, B

T↑, T↓ T↑, T↓ T↑, T↓ T↑, T↓

10

POMDPsPOMDPs• Partially Observable Markov Decision Processes

– S: set of states• Cross product of domain of all variables• |S| = ∏i |dom(Vi)| (exponentially large!)

– A: set of actions• {price↑, price↓, price unchanged}

– O: set of observations• Cross product of domain of observable variables

– T(s,a,s’) = Pr(s’|s,a): transition function• Factored rep: Pr(s’|s,a) = ∏i Pr(Vi|parents(Vi))

– R(s,a) = r: reward function• Sale = price x CC

11

Belief monitoringBelief monitoring• Belief: b(s)

– Distribution over states

• Belief update: Bayes theorem– bao’(s’) = k Σs∈S b(s) Pr(s’|s,a) Pr(o’|a,s’)– bao’ = < o’, a, b >

• Demand learning and opponent modeling:– Implicit learning by belief monitoring

12

Policy treesPolicy trees• Policy π

– Mapping from past actions & obs to next action– Tree representation

– Problem: tree grows exponentially with time

a1

a3a2

a7a6a5a4

o1 o2

o1 o2

o1 o2

13

Policy OptimizationPolicy Optimization• Policy π : B A

– mapping from beliefs to actions

• Value function Vπ(b) = Σt γt Ebt|π [R]

• Optimal policy π*:– V*(b) ≥ Vπ(b) for all π,b

• Bellman’s Equation:– V*(b) = maxa Eb[R] + γ Σo’ Pr(o’|s,a) V*(bao’)

14

DifficultiesDifficulties

• Exponentially large state space– |S| = ∏i |dom(Vi)|– Solution: algebraic decision diagrams

• Complex policy space– Policy π : B A– Continuous belief space– Solution: point-based Bellman backups

15

Symbolic Symbolic PerseusPerseus

• Publicly available:– http://www.cs.uwaterloo.ca/~ppoupart/software.html

• Has been used to solve POMDPs with millions of states

• Currently used by– Intel, Toronto Rehabilitation Institute, Univ of Dundee,

Technical Univ of Lisbon, Univ of British Columbia, Univ of Manchester, Univ of Waterloo

Point-based value iteration

algebraic decision diagrams

+

16

Piecewise linear & convex Piecewise linear & convex valval fnfn• Value of a policy tree β is linear

Vβ(b0) = Σs∈S b0(s) Vβ(s)

• Value of an optimal finite horizon policy is piecewise-linear and convex [SS73]

belief spaceb(s)=0 b(s)=1

17

PointPoint--based value iterationbased value iteration• Point-based backup (Pineau & al. 2003)

αt-1(b) = maxa Eb[R] + γ Σo’ Pr(o’|s,a) αt(bao’)

b

VtVt-1

bao2bao1

18

Algebraic Decision DiagramsAlgebraic Decision Diagrams• First use in MDPs: Hoey et al. 1999

• Factored Representation– Exploit conditional independence– Pr(s’|s,a) = ∏i Pr(Vi|parents(Vi))

• Automatic State aggregation– Exploit context specific independence– Exploit sparsity

19

Factored RepresentationFactored Representation

• Transition fn: Pr(s’|s,a) – Flat representation: matrix O(|S|2)– Factored representation: often O(log |S|)

Price

CC

Inv

Sales

Price

CC

Inv

Price

CC

Inv

Price

CC

Inv

Sales Sales

Time Time Time Time

20

Computation with Factored RepComputation with Factored Rep

• Belief monitoring: – bao’(s’) = k Pr(o’|a,s’) Σs b(s) Pr(s’|s,a)

• Point-based Bellman backup:– α(s) = maxa R(s,a) + Σs’o’ Pr(s’|s,a) Pr(o’|a,s’) αao’(s’)

• Flat representation: O(|S|2)• Factored representation: often O(|S| log |S|)

21

Algebraic Decision DiagramsAlgebraic Decision Diagrams

• Tree-based representation– Acyclic directed graph

• Avoid duplicate entries– Exploit context

specific independence– Exploit sparsity

2x~y~z0x~yz0xy~z0xyz

X

Y Y

Z

0 2

3

3~x~y~z3~x~yz2~xy~z0~xyz

22

Empirical ResultsEmpirical Results• Monopolistic Dynamic Pricing

448199192817,92035 / 70

350199188605,12030 / 60

161198182424,32025 / 50

61187171275,52020 / 40

48167152158,72015 / 30

19 13312173,92010 / 20

Runtime (min)

Upper bound

SP Value|S|Inv / Time

23

COACH projectCOACH project• Automated prompting system to help elderly persons

wash their hands• IATSL: Alex Mihailidis, Jesse Hoey, Jennifer Boger et al.

24

Policy OptimizationPolicy Optimization

• Partially observable MDP:– Handle noisy HandLocation and noisy WaterFlow– Can adapt to user responsiveness– 50,181,120 states, 20 actions, 12 observations

• Approximation: fully observable MDP– Assume HandLocation, WaterFlow are fully observable– Remove responsiveness user variable– 25,090,560 states, 20 actions

25

Empirical Comparison (Simulation)Empirical Comparison (Simulation)

26

ConclusionConclusion• Natural encoding of Dynamic Pricing as POMDP

– Demand and competitor learning by belief monitoring– Factored model

• Symbolic Perseus (generic POMDP solvers)– Point-based value iteration + algebraic decision diagrams– Exploit problem specific structure

• Future work– Bayesian reinforcement learning– Planning as inference

top related