sufficient statistics. the poisson and the exponential can be summarized by (n, )

Post on 11-Jan-2016

25 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

More Chapter 4. Sufficient statistics. The Poisson and the exponential can be summarized by (n, ). So too can the normal with known variance Consider a statistic S(Y) - PowerPoint PPT Presentation

TRANSCRIPT

Sufficient statistics.

The Poisson and the exponential can be summarized by (n, ).

So too can the normal with known variance

Consider a statistic S(Y)

Suppose that the conditional distribution of Y given S does not depend on , then S is a sufficient statistic for based on Y

Occurs iff the density of Y factors into a function of s(y) and and a function of y that doesn't depend on

y

More Chapter 4

Example. Exponential

IExp() ~ Y

E(Y) = Var(Y) = 2

Data y1,...,yn

L() = -1 exp(-yj /)

l() = -nlog() - yj /

yj /n is sufficient

2222

2

322

2

2

2)ˆ(

2)(

m.l.e. ˆ

1

0)ˆ( .

yn

yn

ynl

nnl

y

ynl

UequationLikelihood

maximum

0})(

2{)}({

)}({)(

.

2)(

.

2000

0

2

32

ynn

EUE

n

JEI

nInformatioFisher

ynn

J

nInformatioObserved

=

))(

,(~ˆ

distin )()(

)()(

probin 1)2

()()()(

)/()}({

)/()()}({

200

0

20

002/10

3

0

2

0

1

2

0

010

200

0

2000

0

nN

Zyn

nUI

ynnnn

JI

nJE

nIUVar

Approximate 100(1-2 )% CI for 0

2

2/1

/)ˆ()ˆ(

)ˆI(insert Could

)ˆ(ˆ

ynJIHere

Jz

Example. spring data

8.34)(168.26,16 )0188(.96.130.168

000353.3.168/10/)ˆ()ˆ(

3.168ˆ

22

ynJI

cyclesky

Weibull.

)/log()/(/log/

)/(/),(

log)1(loglog),(

)(exp),;()(

1 if lExponentia

0,, ,)(exp),;(

1

1

1

jjj

j

jj

j

jn

n

yyyn

ynU

yynnl

yyyfL

yyy

yf

Note.

),ˆ(),(max

problemmax D-1

)(ˆ /11

lll

yn

profile

j

Expected information

large Want

/)(log)(

/)(2)(2)'(1 (2)/-(2)/- )/(

),(22

2

I

dzzdz

nI

Gamma.

sufficient ),log(

log)1()(loglog)(

)exp()(

)(

0,, ),exp()(

),;(

1

1

jj

jj

jjn

n

yyS

yynnl

yyL

yyy

yf

Example. Bernoulli

Pr{Y = 1} = 1 - Pr{Y = 0} = 0 1

L() = ^yi (1 - )^(1-yi)

= r(1 - )n-r

l() = rlog() + (n-r)log(1-)

r = yj

R = Yj is sufficient for , as is R/n

L() factors into a function of r and a constant

Score vector

[ yj / - (n-yj )/(1-)]

Observed information

[yj /2 + (n-yj )/(1-)2 ]

ny j /ˆ

M.l.e.

Cauchy.

ICau()

f(y;) = 1/(1+(y-)2 )

E|Y| = Var(Y) =

L() = 1/((1+(yj -)2 )

Many local maxima

l() = -log(1+(yj -)2 )

J() = 2((1-(yj -)2 )/(1+(yj -)2 )2 I() = n/2

sufficient is ,....y

N(0,1) closer to is

)ˆ()ˆ( Z)ˆ()ˆ(

)((1)

0

2/1

J0

2/1

n

J

I

y

Z

JIZ

Uniform.

f(u;) = 1/ 0 < u <

= 0 otherwise

L() = 1/n 0 < y1 ,..., yn <

= 0 otherwise

0ˆ//)ˆ(

0/)ˆ(

,...y y

)max(ˆ

222

1(n)

nddl

ddl

y

y

n

j

l() becomes increasingly spikey

E u() = -1 i() = -

ondistributiin lExponentia)ˆ(

1

0 )/(

0 }ˆPr{

n

a

aa

aan

Logistic regression. Challenger data Ibinomials Rj , mj , j

)21()ˆ)(ˆ,ˆ()ˆ(

region Confidence

),(

statistic Sufficient

))exp(1(

)exp(

)!(!

!

),;Pr(),(

})exp{1/(}exp{

2001000

1

110

110

1010

110110

cJ

xRRS

x

xrr

rmr

m

rRL

xx

T

jjj

m

j

jjj

jjj

j

jj

jjj

j

Likelihood ratio.

Model includes dim() = p

true (unknown) value 0

Likelihood ratio statistic

)( ason distributiin )(

)}()ˆ({2)(

020

00

IW

llW

p

Justification.

Multinormal result

If Y ~ N (,) then (Y- )T -1(Y- ) ~ p2

)ˆ)(ˆ()ˆ(

)ˆ)(ˆ()ˆ(

)ˆ()ˆ(

)ˆ(21

)ˆ(

)ˆ()ˆ()ˆ({2

)}()ˆ({2)(

00

00

02

00

00

I

J

llll

llW

T

T

T

TT

Uses.

Pr[W(0) cp(1-2 )] 1-2

)}21(21

)ˆ()(:{

)21( )(

p

p

cll

cW

Approx 100(1-2 )% confidence region

Example. exponential

84.3}/log1/{2:{

84.3)95.0( 1

}/log1/{2)}()ˆ({2

log)ˆ(

/log)(

1

000

yyn

cp

yynll

nynl

ynnl

Spring data: 96 < <335

vs. asymp normal approx 64 < <273 kcycles

Prob-value/P-value. See (7.28)

Choose T whose large values cast doubt on H0

Pr0(T tobs)

Example. Spring data

Exponential E(Y) =

H0: = 100?

.071.0368*2

)802.1|Pr(|)248.3(Pr

248.3)100(

}/log1/{2)(

/)ˆ()ˆ(

10n 3.168ˆ

2

10

2

ZvalueP

W

yynW

ynJI

y

Nesting

: p by 1 parameter of interest

: q by 1 nuisance parameter

Model with params (0, ) nested within (, )

Second model reduces to first when = 0

)ˆ,()ˆ,ˆ(

Note.

0

0

ll

Example. Weibull

params (,)

exponential when = 1

How to examine H0 : = 1?

1p on,distributiin

)]ˆ,()ˆ,ˆ([2)(

2

p

000

llWp

Spring failure times. Weibull

07-5.73E

07)-2(2.867E

)00.5|(|

02.25)]1,168()6,181([2

26.61)1,168( 2749.2)1,168(

)1,168()1,( 75.48)6,181(

227.6)6,181( )6,181()ˆ,ˆ(

1

ZPvalueP

ll

lEL

l

EL

Challenger data. Logistic regression

temperature x1 pressure x2

(0 , 1 , 2 ) = exp{}/(1+exp{})

= 0 + 1 x1 + 2 x2 linear predictor

loglike l(0 , 1 , 2 ) =

0 rj + 1 rj x1j + 2 rj x2j - m log(1+exp{j })

Does pressure matter?

214.)107(.2)24.1|Pr(|

)54.1(Pr :

54.177.*2

05.15),,(max

82.15)0,,(max

2

10

210,,

10,

210

10

Z

valueP

l

l

Model fit.

Are labor times Weibull?

Nest its model in a more general one

Generalized gamma.

0,,, ),exp()(

),,;(1

yyy

yf

Gamma for =1

Weibull for =1

Exponential for ==1

Likelihood results.

max log likelihood:

generalized gamma -250.65

gamma -251.12

Weibull -251.17

gamma vs. generalized gamma

- 2 log like diff:

2(-250.65+251.12) = .94

P-value Pr0 (12 > .94)

= Pr(|Z|>.969)

= 2(.166) = .332

Chi-squared statistics. Pearson's chi-squared

categories 1,...,k

count of cases in category i: Yi

Pr(case in i) = i 0 < i < 1 1k i =1

E(Yi ) = ni

var(Yi ) = i (1 - i )n

cov(Yi ,Yj ) = -i j n i j

E.g. k=2 case cov(Y,n-Y) = -var(Y) = -n1 2

= { (1 ,...,k ): 1k i = 1, 0<1 ,...,k <1}

dimension k-1

Reduced dimension possible?

model i () dim() = p

log like general model:

1k-1 yi log i + yk log[1-1 -...-k-1], 1

k yi = n

nYii /ˆ

log like restricted model:

l() = 1k-1 yi log i() + yk log[1-1()-...-k-1()]

likelihood ratio statistic:

k

pkiiiy1

2

1~)ˆ(/ˆlog2

if restricted model true

The statistic is sometimes written

W = 2 Oi log(Oi /Ei )

(Oi - Ei )2/Ei

)ˆ(E where i iii nyO

Pearson's chi-squared.

5)ˆ(ntion recommenda

~

)ˆ(/)]ˆ([2

p-1-k

12

i

kiii nnyP

Example. Birth data. Poisson?

12.9ˆ 92n arrivalsDaily

Split into k=13 categories

[0,7.5), [7.5,8.5),...[18.5,24] hours

O(bserved) 6 3 3 8 ...

E(xpected) 5.23 4.37 6.26 8.08 ...

P = 4.39

P-value Pr(112 > 4.39) = .96

Two way contingency table.

r rows and c columns

n individuals

Blood groups A, B, AB, O

A, B antigens - substance causing body to produce antibodies

2

2

2

)1)(1(202

26

2)1(35

2)1(179

O

BA

OBB

OAA

O

AB

B

A

group count model I model II

O = 1 - A - B

Question. Rows and columns independent?

W = 2 yij log nyij / yi.y.j

with yi. = j yij

~ k-1-p2 = (r-1)c-1)

2

with k=rc p=(r-1)+(c-1)

P = (yij - yi. y.j /n)2 / (yi. y.j /n)

~ (r-1)(c-1)2

Model 1

W = 17.66

Pr(12> 17.66) = Pr(|Z| > 4.202) = 2.646E-05

P = 15.73

Pr(12> 15.73) = Pr(|Z| > 3.966) = 7.309E-05

k-1-p = 4-1-2 = 1

Model 2

W = 3.17

Pr(|Z| > 1.780) = .075

P = 2.82

Pr(|Z|>1.679) = .093

Incorrect model.

True model g(y), fit f(y;)

valuebad"least " :

0D 0);(

yprobabilitin )()f(y; log /)ˆ(

ydiscrepancLiebler -Kullback

)(})f(y;

g(y)log{ );( minimizes

);( log )( maximizes ˆ

g

g

g

j

ffD

dyygnl

dyyggfD

yfl

Example 1. Quadratic, fit linear

Example 2. True lognormal, but fit exponential

dyyg

nYY

y

ZY

gg

g

)(})f(y;

g(y)log{ Minimizing

/)1(var }2/exp{YE ˆ

}2/exp{

/log :likelog

}exp{ Lognormal

222

2

Large sample distribution.

);()( ifresult mle

))()()(;( ~ ˆ 11

yfyg

IKIN ggggp

Model selection.

Various models:

non-nested

Ockham's razor.

Prefer the simplest model

Formal criteria.

}log)ˆ({2

})ˆ({2

nplBIC

plAIC

Look for minimum

Example. Spring failure

Model p AIC BIC

M1 12 744.8* 769.9*

M2 7 771.8 786.5

M3 2 827.8 831.2

M4 2 925.1 929.3

6 stress levels

M1: Weibull - unconnected , at each stress level

top related