ssd upgrade

Post on 23-Feb-2016

61 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

SSD upgrade. M. LeVine, R. Scheetz BNL Ch. Renard , S. Bouvier Subatech H. Matis , J. Thomas LBNL. HFT components. HFT. SSD IST PXL. IFC Inner Field Cage. FGT. Magnet Return Iron. TPC Volume. EAST. WEST. Solenoid. SSD. SSD characteristics. SSD ladder. - PowerPoint PPT Presentation

TRANSCRIPT

M.J. LeVine 1STAR HFT meeting, Mar 10, 2010

STAR

SSD upgrade

M. LeVine, R. Scheetz BNL

Ch. Renard, S. Bouvier Subatech

H. Matis, J. Thomas LBNL

M.J. LeVine 2STAR HFT meeting, Mar 10, 2010

STAR

TPCVolume

Magnet

Return

Iron

Solenoid

IFCInner Field Cage

SSDISTPXL

EAST WEST

FGT

HFT

HFT components

M.J. LeVine 3STAR HFT meeting, Mar 10, 2010

STARSSD

M.J. LeVine 4STAR HFT meeting, Mar 10, 2010

STAR SSD characteristics

M.J. LeVine 5STAR HFT meeting, Mar 10, 2010

STAR SSD ladder

M.J. LeVine 6STAR HFT meeting, Mar 10, 2010

STAR SSD expected lifetime in RHIC

• Radiation expected during 12 weeks of 500 GeV p-p running: 3.4 krad– Extrapolated from measurements in STAR IR

• Lifetime limit of SSD silicon+associated (on ladder) electronics: >200 krad– Based on measurements of SSD module in 20 MeV

proton beam

• Radiation limit: >30 years of p-p running

M.J. LeVine 7STAR HFT meeting, Mar 10, 2010

STAR SSD upgrade scope

Improve readout performance

Change mechanical mounting to improvehermiticity and interface with IDS

Improve reliability of air cooling

M.J. LeVine 8STAR HFT meeting, Mar 10, 2010

STAR SSD readout upgrade

• SSD electronics -- designed to read out at 200 Hz

• New STAR DAQ now reads up to 1 kHz with low dead time

• SSD must conform to the new performance standard

M.J. LeVine 9STAR HFT meeting, Mar 10, 2010

STAR Readout upgrade concept

• Reading out front end:

– Replace single ADC with 16 ADCs• digitize 16 modules in parallel

– Increase sampling rate to 5.00 MHz

– All ladders processed concurrently

• Transferring data to PC– Increase link throughput to DAQ PC to 120 Mbyte/s per 5

ladders

• 1850 µs -> 450 µs– Multiple (derandomizing) buffers effectively hides this time

• Dead time: 11%@750Hz, <2%@100Hz• [cf. existing: >80%@750Hz,30% @ 100Hz]

2.5 ms -> 154 µs

M.J. LeVine 10STAR HFT meeting, Mar 10, 2010

STAR

DAQ PC

DDL

DAQ roomOuter support

coneSouth platform

VME crate

RDO (1 of 8)

SlaveFPGA

SlaveFPGA

SlaveFPGA

SlaveFPGA

SlaveFPGA

Master FPGA

DA

Q in

terfa

ceTR

G in

terfa

ce

VME FPGA

Fiber links

Ladder cards

VM

E in

terfa

ce

Readout components

M.J. LeVine 11STAR HFT meeting, Mar 10, 2010

STARData formats

non zero-suppressed– 3 10-bit ADC values to a 32-bit word– Fixed order: position in buffer/word -> geographical position

of strip

zero suppressed– Only strips with ADC value above threshold are present – ADC value (10 bits) + strip location (14 bits)– One strip per 32-bit word– Alleviates large memory access burden on DAQ PC– Doing this in real time in FPGA is simple

M.J. LeVine 12STAR HFT meeting, Mar 10, 2010

STARLadder data path

module

module

X16

5 MHz

5 MHz

adc 12bit16 bit serial output

adc 12bit16 bit serial output

80 MHz

80 MHz

FIFO

16

50 MHzpacker

2

JTAG

TDO

s

20

40 MHz

serializer to fiber

16 bit width32 words deep

Write enable:true on 10 clocks only

1 set of adc samples: 10 X 16 bits => repacked into: 2 X 4 X 20 bits

M.J. LeVine 13STAR HFT meeting, Mar 10, 2010

STAR

deserialize

demux

FIFO1

FIFO2

FIFO3

FIFO4

mux

FIFO1:10 deserialize

JTAG

TDO

s

2

20

first wd

40 M

Hz

50 MHz

word 1

word 2

word 3

word 4

20 bit

16 bit

50 MHz 10

10

5 MHz

x16

x16

word 5

unpacking 4 20-bit words to 5 16-bit words

RDO slave - unpacker

M.J. LeVine 14STAR HFT meeting, Mar 10, 2010

STAR Slave FPGA – ADC processing

Pedestal write

ADC 1

ADC 16

counter

0-767

Pedestalmemory

Pedestalmemory

read

add

ress

10

Subtract/multiplex

Subtract/multiplex

2

mod

e

Mode: ADC,pedestal, ordifference

-

+

-

+

Rea

dout

to m

aste

r FP

GA

Buffer 0..3256X32 bits

address

10

14

writ

e pe

d ad

dres

s

writ

e pe

d da

ta

Select: ADC, pedestal only, or max(difference,0)

10

Packing register

1

2

3

10

1

2

3

1

16

Buffer 0..3256X32 bits

÷ 3 8

read addressre

mai

nder

from unpacker

(no zero suppression)

M.J. LeVine 15STAR HFT meeting, Mar 10, 2010

STAR Dead time calculation - no zero suppression

0 200 400 600 800 1000 1200 14000

5

10

15

20

25

30

35

40

45

50

1 buffer2 buffers3 buffers4 buffers

random trigger rate (Hz)

Dea

d tim

e (%

)

M.J. LeVine 16STAR HFT meeting, Mar 10, 2010

STAR Dead time calculations – zero suppression

0 200 400 600 800 1000 1200 14000

5

10

15

20

25

30

35

40

45

50

1 buffer2 buffers3 buffers4 buffers

random trigger rate (Hz)

Dea

d tim

e (%

)

3 % occupancy

M.J. LeVine 17STAR HFT meeting, Mar 10, 2010

STARStatus: slave FPGA

• Components chosen– Altera Cyclone III EP3C55

• FPGA code largely finished– Functional simulations complete– Post P&R done for subsystems– Full place and route in progress

M.J. LeVine 18STAR HFT meeting, Mar 10, 2010

STAR Status: ladder board

• Analog Level shifter (mux replacement) Serial ADC (16 inputs instead of 1)

• Digital Serial ADC Event control Data packer SerDes GBIC 4 temperature monitors Slow control (JTAG) Debug (USB interface)

• Status - layout of PCB complete

M.J. LeVine 19STAR HFT meeting, Mar 10, 2010

STAR Ladder board PCB

Flex circuit layer

M.J. LeVine 20STAR HFT meeting, Mar 10, 2010

STAR Status: documentation

M.J. LeVine 21STAR HFT meeting, Mar 10, 2010

STAR Testing road map

• Ladder board standalone test – JTAG header to program FPGA for testing– Use USB interface to verify/correct FPGA behavior up to serdes

• RDO standalone test – VME interface to program, probe master, slaves– Use user-defined JTAG to verify, debug

• Integrate ladder, RDO with fiber

• Entire system can be tested w/o DAQ PC– Use VME to communicate with master FPGA

M.J. LeVine 22STAR HFT meeting, Mar 10, 2010

STAR SSD mounting

M.J. LeVine 23STAR HFT meeting, Mar 10, 2010

STAR New SSD ladder arrangement

Cooling plenum

M.J. LeVine 24STAR HFT meeting, Mar 10, 2010

STAR SSD services

Chordal GapsBetween FGTAnd WSC Shell

Air Taken from IFC Volume

OpticalData/Control

Air Coolant (suction)East End Only

ModuleConnectors(internal)

Low Voltage Power inOn Both SidesHV East Side Only

LV/HV (no HV out West)No Cooling out West

M.J. LeVine 25STAR HFT meeting, Mar 10, 2010

STAR

RDO

North Platform

South Platform

DAQ Room Cooling

(RDO & Power)

DAQ Computers

WSC ESCSSD

The SSD is mounted on the OSC

System overview

LV/HVPS

M.J. LeVine 26STAR HFT meeting, Mar 10, 2010

STAR SSD cooling

• Replace Vortex blower (76 kW)• Use maintainable vacuum• Reroute tubing• Instrument with temperature

and flow measurements

M.J. LeVine 27STAR HFT meeting, Mar 10, 2010

STAR SSD ladder power requirements

FEE (ladder modules)

Ladder cards Total

Old SSD 9.6 W 10.0 W 19.6 W

Upgraded SSD 11.5 W 13.6 W 25.1 W

M.J. LeVine 30STAR HFT meeting, Mar 10, 2010

STARSSD milestones

date milestoneQ3

FY10Review of board layout for ladder board and RDOStart board (prototype) fabrication for both

Q2 FY11

Finish testing ladder board @BNL (digital event processing only). Finish testing RDO @BNL. Integrated testing @ Subatech for both boards

Q3 FY11

Develop slow controls and DAQ software

Q4 FY11

Produce full complement of boards

Q4 FY12

Move Full System to STAR for test

Q3 FY13

Install completed SSD in STAR

M.J. LeVine 31STAR HFT meeting, Mar 10, 2010

STARSSD cost profile

Fiscal year

Base cost (K$)

Contingency (K$)

Total (K$)

FY10 120 30 150

FY11 110 20 130

FY12 220 120 340

FY13 210 120 330

FY14 0 0 0

Total 660 290 950

M.J. LeVine 35STAR HFT meeting, Mar 10, 2010

STAR New developments

• Measured analog response at ADCs• Single event upsets and remediation• Improved zero-suppression• Integration issues being addressed

– Cables, fibers, routing, grounding• Safety issues (grounding, floating PS,

fuses, HV)

M.J. LeVine 36STAR HFT meeting, Mar 10, 2010

STARAnalog response vs clock frequency

4.3 MHz

5.0 MHz

6.0 MHz

Horiz:100 ns/cm

M.J. LeVine 37STAR HFT meeting, Mar 10, 2010

STAR Single event upsets

• Ionizing radiation causes single bit errors in configuration memory (internal to FPGA)– Change FPGA behavior

• Scale from observed error frequency in TOF– Estimate 1 error per 10 minutes in SSD

• Must pro-actively detect these errors by running CRC checks while acquiring data

M.J. LeVine 38STAR HFT meeting, Mar 10, 2010

STAR Improvement to zero suppression

• Zero suppression based on preserving above-threshold strips

• Want to retain neighbors as well• Problem: strips are not read out in order

– Have to store them in intermediate buffer, in geographic order, before suppression

– RAM has been added (larger FPGA)– Implementation will come later

M.J. LeVine 39STAR HFT meeting, Mar 10, 2010

STAR Integration issues

• Power cables will be Cu-coated Al• Cables to West (through FGT) are the

most difficult due to limited area• Routing details being addressed• Grounding plan being integrated with

other HFT subdetectors

M.J. LeVine 40STAR HFT meeting, Mar 10, 2010

STAR Safety issues

• Need to ensure that details will be approved by RHIC safety committee– Floating PS with safety resistors– Fuse protection for sense wires– HV considerations

• HV is <100V, I < 0.1ma

M.J. LeVine 41STAR HFT meeting, Mar 10, 2010

STAR SSD - summary

• Design progressing well• Costs have been accurately estimated• Risks are minimal

– No technical risks– Mitigation strategies in place

M.J. LeVine 42STAR HFT meeting, Mar 10, 2010

STAR Spare slides

Spare slides

M.J. LeVine 43STAR HFT meeting, Mar 10, 2010

STAR

---- Backup material

M.J. LeVine 44STAR HFT meeting, Mar 10, 2010

STAR Existing readout configuration

• 1 ADC reads 16 modules sequentially• ADC sampling speed: 3 MHz• Connection to RDO is via copper cable

– Restricts RDO location to magnet face

• 1 RDO serves 10 ladders– Data link to DAQ computer oversubscribed

Performance of existing system:Dead time @100 Hz: 30%Dead time @ 750 Hz: >80%

M.J. LeVine 45STAR HFT meeting, Mar 10, 2010

STAR SSD mounting detail

M.J. LeVine 46STAR HFT meeting, Mar 10, 2010

STAR SSD: interior view

M.J. LeVine 47STAR HFT meeting, Mar 10, 2010

STARSlow controls

• Path from RDO to ladder defined– JTAG transported on fiber pair

• Multiple paths from VME CPU to RDO possible:– FP JTAG connector

• Compatible with existing software, hardware• Provides migration path

– VME interface• Best performance• Requires software development

M.J. LeVine 48STAR HFT meeting, Mar 10, 2010

STARSSD with 3 mounted ladders

M.J. LeVine 49STAR HFT meeting, Mar 10, 2010

STARLadder: exploded view

M.J. LeVine 50STAR HFT meeting, Mar 10, 2010

STARModule: exploded view

M.J. LeVine 52STAR HFT meeting, Mar 10, 2010

STAR Cost details for SSD readout

RDO card (qty: 10)Components $3080Fabrication $ 910Assembly $ 910Total (each card) $4900

Ladder card (qty: 50)Components $1920Fabrication $1250Assembly $ 300Total (each card) $3470

DDL links (qty: 12)SIU $ 670½ DRORC $ 840Total (per link) $1510

DAQ PC (qty: 2)Each $2900

Total production cost:$246.2K

• Includes spares• Costs are burdened• Does not include prototypes

M.J. LeVine 53STAR HFT meeting, Mar 10, 2010

STAR

Data formats: zero suppressed

• Only strips with ADC value above threshold are present – ADC value (10 bits) + strip location (14 bits)

• One strip per 32-bit word• Alleviates large memory access burden on DAQ PC• Doing this in real time in FPGA is simple

M.J. LeVine 54STAR HFT meeting, Mar 10, 2010

STAR

Data flow: Ladder card

• Each yellow box (x5) represents one ladder– Connection card + ADC card– Dual input ADC (x8) with bit-serial outputs– 16 outputs feed 1 gigabit serializer

• Green boxes: readout card• Connection to readout card

– gigabit fiber pair per ladder

M.J. LeVine 55STAR HFT meeting, Mar 10, 2010

STAR

Dataflow: Readout card

• Per ladder (5X):• Optical link • Deserializer• Slave FPGA

• 1 master FPGA– Manages data from the ladder FPGAs– Manages the DDL connection to the DAQ PC– Manages connection to TRG

M.J. LeVine 56STAR HFT meeting, Mar 10, 2010

STARExisting readout configuration

M.J. LeVine 57STAR HFT meeting, Mar 10, 2010

STAR Data flow organization

M.J. LeVine 58STAR HFT meeting, Mar 10, 2010

STARReadout components

RDO

DAQ PC

DD

L

Dup

lex

fiber

pai

r

Outer support cone

South platform VME crate DAQ room

Ladder card(1 of 5)

Ladder card (1 of 5)

M.J. LeVine 59STAR HFT meeting, Mar 10, 2010

STAR Funding profile

• FY 2010 $150K prototyping• FY 2011 $25K shipping, tools, …• FY 2012 $250K production• FY 2013 $15K tools

M.J. LeVine 60STAR HFT meeting, Mar 10, 2010

STAR SSD mechanical development

• Replace Vortex blower (76 kW)• Use maintainable vacuum• Reroute tubing – avoid kinks• Instrument with temperature

and flow measurements

M.J. LeVine 61STAR HFT meeting, Mar 10, 2010

STAR Status: ladder board (analog)

16 x

Hybrid(Alice128)No change

Flex(<=1m long)No change

Power switch(+2V & agnd)No change

Power measure(-2V)

No change

Level shift(4V->2.5V)

Mux replacmt.

Serial ADC(12b,5MS/s)

16 instead of 1

connector(30p)

No change

M.J. LeVine 62STAR HFT meeting, Mar 10, 2010

STARStatus: ladder board (digital)

x16 x1Power switch(+2V & agnd)No change

Power measure(-2V)

No change

Level shift(4V->2.5V)

Serial ADC(12b,5MS/s)

SerDes(24b,40MHz)

Data packer(5*16->4*20)

Bias & latchup()

No change slow control(JTAG)

Event ctrl(hold,test,clk,token)

temperature(x4)

gbic(1Gb/s)

debug(8b,usb)

Flex(<=1m long)No change

M.J. LeVine 63STAR HFT meeting, Mar 10, 2010

STARSSD cost profile

2009 2010 2011 2012 2013 2014$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

$500,000

M.J. LeVine 64STAR HFT meeting, Mar 10, 2010

STAR Ladder board PCB

Flex circuit layer

M.J. LeVine 65STAR HFT meeting, Mar 10, 2010

STAR SSD original layout

M.J. LeVine 66STAR HFT meeting, Mar 10, 2010

STAR Risk assessment

• Digital design fully simulated• Oversights in layout

– Schedule and budget allow for extra iteration in prototypes

• Schedule impact– None (slack in schedule)

• Cost impact– No impact foreseen on production costs

M.J. LeVine 67STAR HFT meeting, Mar 10, 2010

STAR

Upgrade overview

• Ladder-modular organization– 5 ladders send data to a readout card– 4 readout cards @ each end of SSD

• Each readout card feeds a DDL link to a DAQ PC– A PC-based DRORC card hosts 2 DDL fibers

top related