sph simulation of fluid-structure interaction...

Post on 06-Apr-2019

244 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SPH simulation of fluid-structure

interaction problems

Università degli Studi di Pavia

C. Antoci, M. Gallati, S. Sibilla

Dipartimento di ingegneria idraulica e ambientale

Research project

• Problem: deformation of a plate due to the action of a fluid

(large displacement of the structure, fluid free surface)

• Numerical technique:

SPH Lagrangian: it automatically follows moving

interfaces

Relatively easy to include the simulation of different materials

Università degli Studi di Pavia

Scheme of the model

Structure Fluid

(SPH) (SPH)

Coupling conditions on the interface:

Università degli Studi di Pavia

Kinematic condition:

Dynamic condition:

sf vv&& =

nvnv sf ˆˆ ⋅=⋅ &&(perfect fluid)

ffss nn ˆˆ σσ −=

fssT

s pnn =ˆˆ σ (perfect fluid)

Continuum equations

0=+i

i

x

v

Dt

D

∂∂ρρ

j

iji

i

xg

Dt

Dv

∂∂σ

ρρ +=

(i=1,3)

(i,j=1,3)

continuity equation

equation of motion

ρ density

t time

xi position (i-component of the vector)

vi velocity (i-component of the vector)

σij stress (ij-component of the tensor)

gi gravity acceleration (i-component of the vector)

Università degli Studi di Pavia

(isothermal conditions)

fluid00 ρε=c

deviatoric stresspressure

State equation and constitutive equations

Università degli Studi di Pavia

solid

kjikjkikijijij

ijSS

dt

dSΩ+Ω+

−= εδεµ

3

12

∂∂

+∂∂

=i

j

j

iij

x

v

x

v

2

∂−

∂∂

=Ωi

j

j

iij

x

v

x

v

2

1

( )02

0 ρρ −= cp

00 ρkc =

(µ shear modulus)

ijijij Sp +−= δσ (i,j=1,3)

• Sij

(ε compressibility modulus)

(k bulk modulus)

Sij = 0 (perfect fluid)fluid

solid

2D SPH equations (1)

(“a” and “b”: particle labels)

Università degli Studi di Pavia

•Equation of state: ( )aaa cp 02

0 ρρ −=

•Continuity equation: ∑ ∇⋅−=b

abababa Wvvm

Dt

D)(

&&ρ

2D SPH equations (2)

∑ +∂∂

+∏++=

bi

aj

abn

abijijab

b

bij

a

aij

bai g

x

WfRm

Dt

Dvδ

ρ

σ

ρ

σ22

Equation of motion:

artificial stress (Gray, Monaghan and Swift 2001)

aijijaaij Sp +−= δσ Sij calculated by an implicit scheme

from the incremental hypoelastic relation

Università degli Studi di Pavia

artificial viscosity (Monaghan and Gingold 1983)

∑ +∂∂

+−=

bi

j

abij

b

b

a

ab

ai gx

Wppm

Dt

Dv

a

δρρ 22

fluid

solid

2D SPH equations (3)

Velocity gradient:

( )a

abj

abii

b b

b

aj

i

x

Wvv

m

x

v

∂∂

−=∂∂

∑ρ

spin

rate of deformation

Università degli Studi di Pavia

[or: velocity gradient normalized to account for non uniformity

in particle distribution]

Fluid-structure interaction

Università degli Studi di Pavia

- Two sets of particles, fluid and solid

- A simple approach: to consider particles in the equations regardless

of the fact they are fluid or solid

- Interpenetration of fluid and solid particles can be prevented using

XSPH but the interaction is not well reproduced (excessive adhesion)

- Definition of the fluid-solid interface (and normal)

- Dynamic condition (action-reaction principle)

- Kinematic condition

Definition of the fluid-solid interface

Università degli Studi di Pavia

Since solid particles maintain the same regular spatial distribution (no fragmentation):

( )

−−

−−

==−+

−+

−+

−+

11

11

11

11 ,,ˆaa

aa

aa

aaayaxa

xx

yy

xx

xxttt &&&&

( )axaya ttn ,ˆ −=

aaan

dxx ˆ

2int += &&

(for every solid particle near the interface)

Dynamic condition

Università degli Studi di Pavia

( )

( )∑

Ω∈

Ω∈

=

fa

fa

a

bb

b

b

bbb

b

b

hxxWm

hxxWpm

p

,

,

int

int

int&&

&&

ρ

ρ

0.5 (constant, in order to take in account

possible separation of the two media)

( ) ','intint Γ−= ∫Γ

→ dhxxWpFaasf

&&

(Ff→s/ρa added term in

the momentum equation)

Fs→f,a* = - Ff→s,a(linear interpolation)

surface term:

Kinematic condition

Università degli Studi di Pavia

( )

( )∑

Ω∈

Ω∈

=

sb

sb

b

bb

b

b

bbbi

b

b

i

hxxWm

hxxWvm

v

,

,

*

*

*

int

int

int&&

&&

ρ

ρ

( )annnbn vvdvv

bb−+=

** int*

int d* = max (db/d

a,2)

atbtvv =

- a velocity distribution is assigned to solid particles in order to obtain

by SPH interpolation (on the interface) the interface velocity (normal component):

- velocity of the interface:

- “a” fluid particle “b*” solid particle (the nearest)

Other features of the code

•Correction of velocity:

-XSPH (solid)(Monaghan 1989)

-dissipative correction (fluid) (Gallati and Braschi 2000)

(on the interface particles from both media have to be included in the correction)

•Boundary conditions:

- fluid

- imaginary particles which reflect velocity

- layer of fixed particles (2h)

- solid (clamp)

- layer of fixed particles which are calculated just like

others but with velocity equal to zero

•Time integration scheme: Euler explicit (staggered)

•Kernel: cubic spline (Monaghan 1992)

Università degli Studi di Pavia

Example: Elastic gate

Università degli Studi di Pavia

≅107 PaE (Young modulus)

1100 kg/m3ρs

Sluice-gate (rubber)

0.005 mS

0.079 mL

0.14 mH

0.1 mA

Dimensions

Università degli Studi di Pavia

Simulation

ε = 2×106 N/m2 (compressible)

ρf= 1000 kg/m3

ν = 0.4 (Poisson coefficient)

E=1.2×107 N/m2

h/d=1.5

nP=6012

dt=8.34 ×10-6 st=0 s

K = 2×107 N/m2

µ = 4.27×106 N/m2

Università degli Studi di Pavia

t=0 s

Comparison between simulation and experiment

Università degli Studi di Pavia

t=0.04 s

Università degli Studi di Pavia

t=0.08 s

Università degli Studi di Pavia

t=0.12 s

Università degli Studi di Pavia

t=0.16 s

Università degli Studi di Pavia

t=0.2 s

Università degli Studi di Pavia

t=0.24 s

Università degli Studi di Pavia

t=0.28 s

Università degli Studi di Pavia

t=0.32 s

Università degli Studi di Pavia

t=0.36 s

Università degli Studi di Pavia

t=0.4 s

Università degli Studi di Pavia

Free end of the plate: displacements (1)

horizontal displacement

0

0,01

0,02

0,03

0,04

0,05

0,06

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

time (s)

h.d. (m)experiment

simulation

Università degli Studi di Pavia

Free end of the plate: displacements (2)

vertical displacement

0

0,005

0,01

0,015

0,02

0,025

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

time (s)

v.d. (m)experiment

simulation

Università degli Studi di Pavia

Free surface (1)

water level behind the gate

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

t (s)

y (m)experiment

simulation

Università degli Studi di Pavia

Free surface (2)

water level 5 cm far from the gate

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

time (s)

y (m)experiment

simulation

Future work

• To complete the normalization of the elastic equations with

explicit treatment of boundary conditions

• To improve the model in order to manage larger deformations

• To write the code in cylindrical coordinates in order to

simulate axially symmetric problems (“flex-flow” valves,

sloshing in cylindrical tanks…)

• To use two different spatial discretizations for the fluid and

the solid (membranes, hemodynamics)

Università degli Studi di Pavia

This research was financed by Dresser Italia

top related