sequential learned linear predictors for object tracking - center for machine...

Post on 12-Aug-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Sequential Learned Linear Predictors for ObjectTracking

Tomas Svobodajoint work with Karel Zimmermann, Jirı Matas, and David Hurych

Czech Technical University, Faculty of Electrical EngineeringCenter for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

June 23, 2009

Object tracking

I Tracking - iterative estimation of an object pose in asequence (e.g., 2D position of Basil’s head).

I Trade-off among accuracy, speed, robustness is explicitlytaken into account.

video: Basil head

Object tracking

I Tracking - iterative estimation of an object pose in asequence (e.g., 2D position of Basil’s head).

I Trade-off among accuracy, speed, robustness is explicitlytaken into account.

video: Basil head

Object tracking

I Tracking - iterative estimation of an object pose in asequence (e.g., 2D position of Basil’s head).

I Trade-off among accuracy, speed, robustness is explicitlytaken into account.

video: Cartoon eye

Tracking

Current imageTemplate

Motion

Observation

Observation (image) I and template J

Tracking of a single point

X

Current position

Tracking of a single point

X

Old position

Tracking of a single point

X

Old position

[Lucas-Kanade1981] - Iterative minimization

argmint‖I(t)− J‖2argmint‖I(t)− J‖2image I alignment t

J← I(t)

optional template updateLucas–Kanade

[Lucas-Kanade1981] - Iterative minimization

argmint‖I(t)− J‖2argmint‖I(t)− J‖2image I alignment t

J← I(t)

optional template updateLucas–Kanade

video: KLT iterations

Regression - learn the mapping in advanceo

H(I− J)H(I− J)image I alignment t

J← I(t)

optional template updateJurie–Dhome

I [Jurie-BMVC-2002] - learned motion and optional hardtemplate update

I [Cootes-PAMI-2001] - learned regression during AAM iterations

I . . .

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Learning alignment for one predictor

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

I ϕ( )= (0, 0)>

I ϕ( )= (−25, 0)>

I ϕ( )= (25,−15)>

Generating training examples

[ ]

t − motioni I = I(x ,...x ) − observation1 ci

examples

displacementestimation

generating

+2

+7+9

+4

−8

−4

training set: +2 −4 +4+9 +7 −8

T= I=

Training set: (I, T)I = [I1 − J, I2 − J, . . . Id − J] and T = [t1, t2, . . . td ].

LS learning

ϕ∗ = argminϕ∑

t

‖ϕ(I(t ◦ X

))− t‖2.

Minimizes sum of square errors over all training set. Leads tomatrix pseudoinverse computation.

Example for linear mapping:

H∗ = argminH

d∑i=1

‖H(Ii − J)− ti‖22 = argminH‖HI− T‖2F

after some derivation

H∗ = T I>(II>)−1︸ ︷︷ ︸I+

= TI+.

LS learning

ϕ∗ = argminϕ∑

t

‖ϕ(I(t ◦ X

))− t‖2.

Minimizes sum of square errors over all training set. Leads tomatrix pseudoinverse computation.

Example for linear mapping:

H∗ = argminH

d∑i=1

‖H(Ii − J)− ti‖22 = argminH‖HI− T‖2F

after some derivation

H∗ = T I>(II>)−1︸ ︷︷ ︸I+

= TI+.

LS learning

ϕ∗ = argminϕ∑

t

‖ϕ(I(t ◦ X

))− t‖2.

Minimizes sum of square errors over all training set. Leads tomatrix pseudoinverse computation.

Example for linear mapping:

H∗ = argminH

d∑i=1

‖H(Ii − J)− ti‖22 = argminH‖HI− T‖2F

after some derivation

H∗ = T I>(II>)−1︸ ︷︷ ︸I+

= TI+.

Min-max learning

ϕ∗ = argminϕ maxt‖ϕ(I(t ◦ X

))− t‖∞.

Minimizes the worst case (the biggest estimation error) in thetraining set. Leads to linear programming.

Tracking of a single point by a sequence of predictors

X

t =1 ϕ1

Old position

Tracking of a single point by a sequence of predictors

X

o

1

t =1 ϕ1

Old position

Tracking of a single point by a sequence of predictors

X

o

1

t =1 ϕ1

Old position

Tracking of a single point by a sequence of predictors

X

o

1

t =1 ϕ1

Old position

Tracking of a single point by a sequence of predictors

X

o

1

t =1 ϕ1

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o2

1

t =1 ϕ1

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o2

1

t =1 ϕ1

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o2

1

t =1 ϕ1

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o2

1

t =1 ϕ1

t =3 ϕ3

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o

o

2

1

3 t =1 ϕ1

t =3 ϕ3

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

X

o

o

o

2

1

3

New position

t =1 ϕ1

t =3 ϕ3

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

1 2Φ=(ϕ,ϕ,ϕ)

3

X

o

o

o

2

1

3

New position

t =1 ϕ1

Motion

t =3 ϕ3

t =2 ϕ2

Old position

Tracking of a single point by a sequence of predictors

1 2Φ=(ϕ,ϕ,ϕ)

3

Ranges

X

o

o

o

2

1

3

New position

t =1 ϕ1

Motion

t =3 ϕ3

t =2 ϕ2

Old position

Learning of sequential predictor

I Learning - searching for the sequence with predefined range,accuracy and minimal computational cost.

I [Zimmermann-PAMI-2009] - Dynamic programming estimatesthe optimal sequence of linear predictors.

I [Zimmermann-IVC-2009] - Branch & bound search allows fortime constrained learning (demo in MATLAB).

[Zimmermann-PAMI-2009] K.Zimmermann, J.Matas, T.Svoboda. Tracking by anOptimal Sequence of Linear Predictors, in IEEE Transactions on Pattern Analysis andMachine Intelligence, IEEE computer society, 2009, vol. 31, No 4, pp 677–692.

[Zimmermann-IVC-2009] K.Zimmermann, T.Svoboda, J.Matas. Anytime learning for

the NoSLLiP tracker. Image and Vision Computing, Elsevier, accepted, available

on-line.

Learning of sequential predictor

I Learning - searching for the sequence with predefined range,accuracy and minimal computational cost.

I [Zimmermann-PAMI-2009] - Dynamic programming estimatesthe optimal sequence of linear predictors.

I [Zimmermann-IVC-2009] - Branch & bound search allows fortime constrained learning (demo in MATLAB).

[Zimmermann-PAMI-2009] K.Zimmermann, J.Matas, T.Svoboda. Tracking by anOptimal Sequence of Linear Predictors, in IEEE Transactions on Pattern Analysis andMachine Intelligence, IEEE computer society, 2009, vol. 31, No 4, pp 677–692.

[Zimmermann-IVC-2009] K.Zimmermann, T.Svoboda, J.Matas. Anytime learning for

the NoSLLiP tracker. Image and Vision Computing, Elsevier, accepted, available

on-line.

Learning of sequential predictor

I Learning - searching for the sequence with predefined range,accuracy and minimal computational cost.

I [Zimmermann-PAMI-2009] - Dynamic programming estimatesthe optimal sequence of linear predictors.

I [Zimmermann-IVC-2009] - Branch & bound search allows fortime constrained learning (demo in MATLAB).

[Zimmermann-PAMI-2009] K.Zimmermann, J.Matas, T.Svoboda. Tracking by anOptimal Sequence of Linear Predictors, in IEEE Transactions on Pattern Analysis andMachine Intelligence, IEEE computer society, 2009, vol. 31, No 4, pp 677–692.

[Zimmermann-IVC-2009] K.Zimmermann, T.Svoboda, J.Matas. Anytime learning for

the NoSLLiP tracker. Image and Vision Computing, Elsevier, accepted, available

on-line.

Learning of the optimal sequence of linear predictors

Range

Complexity

Uncertaintyregion

I Range: the set of admissible motions, r .I Complexity: cardinality of support set, c .I Uncertainty region: the region within which all predictions

lie, λ. Small red circles show acceptable uncertainty.

Learning of the optimal sequence of linear predictors

0

20

40

60

80

100

0

50

100

150

200

0

10

20

30

40

50

r − range

c − complexity

λ −

unc

erta

inty

are

a

Achievablepredictors ω

Inachievablepredictors

λ−minimal predictors

I Range: the set of admissible motions, r .I Complexity: cardinality of support set, c .I Uncertainty region: the region within which all predictions

lie, λ. Small red circles show acceptable uncertainty.

Learning of the optimal sequence of linear predictors

I Range: the set of admissible motions, r .I Complexity: cardinality of support set, c .I Uncertainty region: the region within which all predictions

lie, λ. Small red circles show acceptable uncertainty.

Learning of the optimal sequence of linear predictors

I Range: the set of admissible motions, r .I Complexity: cardinality of support set, c .I Uncertainty region: the region within which all predictions

lie, λ. Small red circles show acceptable uncertainty.

Branch and Bound

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Graph depth

Pre

dic

tion e

rror

c=600c=320 c=360

c=80

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Graph depth

Pre

dic

tion e

rror

c=100

c=600c=320

c=380

Don’t forget to show the live demo!

Branch and Bound

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Graph depth

Pre

dic

tion e

rror

c=600c=320 c=360

c=80

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Graph depth

Pre

dic

tion e

rror

c=100

c=600c=320

c=380

Don’t forget to show the live demo!

Modeling motion by number of linear predictors.

Support set selection

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.110

50

100

150

200

250

300

350

400

450

500

MSE

I Greedy LS selection (red) of an efficient support set.

I Much better than 1%-quantile (green) achieavable byrandomized sampling

Tracking of objects with variable appearance

I Variable appearance - the way how the object looks like inthe camera changes due to illumination, non-rigiddeformation, out-of-plane rotation, ...

Tracking of objects with variable appearance

I Variable appearance - the way how the object looks like inthe camera changes due to illumination, non-rigiddeformation, out-of-plane rotation, ...

Simultaneous learning of motion and appearance

ϕ(I)ϕ(I)image I alignment t

I Introduce feedback which encodes appearance in a lowdimensional space and adjust the predictor.

I Appearance parameters learned in unsupervised way.

I Simultaneous learning of ϕ and γ ⇒ appearance encoded inthe low dimensional space, which is the most suitable for themotion estimation.

Simultaneous learning of motion and appearance

ϕ(I;θ)ϕ(I;θ)

γ(J)γ(J)

image I alignment t

J← I(t) imageθ appearance parameters

I Introduce feedback which encodes appearance in a lowdimensional space and adjust the predictor.

I Appearance parameters learned in unsupervised way.

I Simultaneous learning of ϕ and γ ⇒ appearance encoded inthe low dimensional space, which is the most suitable for themotion estimation.

Simultaneous learning of motion and appearance

ϕ(I;θ)ϕ(I;θ)

γ(J)γ(J)

image I alignment t

J← I(t) imageθ appearance parameters

I Introduce feedback which encodes appearance in a lowdimensional space and adjust the predictor.

I Appearance parameters learned in unsupervised way.

I Simultaneous learning of ϕ and γ ⇒ appearance encoded inthe low dimensional space, which is the most suitable for themotion estimation.

Simultaneous learning of motion and appearance

ϕ(I;θ)ϕ(I;θ)

γ(J)γ(J)

image I alignment t

J← I(t) imageθ appearance parameters

I Introduce feedback which encodes appearance in a lowdimensional space and adjust the predictor.

I Appearance parameters learned in unsupervised way.

I Simultaneous learning of ϕ and γ ⇒ appearance encoded inthe low dimensional space, which is the most suitable for themotion estimation.

Learning appearance

H(I− J)H(I− J)image I alignment t

J← I(t)

optional template updateJurie–Dhome

Learning appearance

H(I− J(θ))H(I− J(θ))H(I− J(θ))H(I− J(θ))

PCAJPCAJ

timage I

I(t)θ

Cootes–Edwards

Learning appearance – our approach

H(I− J(θ))H(I− J(θ))H(I− J(θ))H(I− J(θ))

PCAJPCAJ

timage I

I(t)θ

Cootes–Edwards

ϕ(I;θ)ϕ(I;θ)

γ(I(t))γ(I(t))

image I alignment t

I(t) imageθ appearance parameters

Our algorithm

Learning appearance – our approach

H(I− J(θ))H(I− J(θ))H(I− J(θ))H(I− J(θ))

PCAJPCAJ

timage I

I(t)θ

Cootes–Edwards

ϕ(I;θ)ϕ(I;θ)

γ(I(t))γ(I(t))

image I t

I(t) imageθ appearance parameters

Our algorithm

motion estimator

appearance encoder

Learning the appearance encoder γ

I Current appearance encoded in low-dim parameters.

I γ( ) = θ1 I γ( ) = θ2

Learning the appearance encoder γ

I Current appearance encoded in low-dim parameters.

I γ( ) = θ1 I γ( ) = θ2

Learning the appearance encoder γ

I Current appearance encoded in low-dim parameters.

I γ( ) = θ1 I γ( ) = θ2

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Learning the tracker ϕ(I; θ)

I ϕ( ; θ1)= (0, 0)>

I ϕ( ; θ1)= (−25, 0)>

I ϕ( ; θ1)= (25,−15)>

I ϕ( ; θ2)= (0, 0)>

I ϕ( ; θ2)= (−25, 0)>

I ϕ( ; θ2)= (25,−15)>

Simultaneous learning of ϕ and γ

I Learning = minimization of the least-squares error

(ϕ∗, γ∗) = arg minϕ,γ[ϕ(

; γ( ))−(0, 0)>

]2+[

ϕ(

; γ( ))−(−25, 0)>

]2+[

ϕ(

; γ( ))−(25,−15)>

]2+[

ϕ(

; γ( ))−(0, 0)>

]2+[

ϕ(

; γ( ))−(−25, 0)>

]2+[

ϕ(

; γ( ))−(25,−15)>

]2

Simultaneous learning of ϕ and γ

I Learning = minimization of the least-squares error

(ϕ∗, γ∗) = arg minϕ,γ[ϕ(

; γ( ))−(0, 0)>

]2+[

ϕ(

; γ( ))−(−25, 0)>

]2+[

ϕ(

; γ( ))−(25,−15)>

]2+[

ϕ(

; γ( ))−(0, 0)>

]2+[

ϕ(

; γ( ))−(−25, 0)>

]2+[

ϕ(

; γ( ))−(25,−15)>

]2

Linear mapping

I γ(J) : θ = GJ

I ϕ(I,θ) : t = (H0 + θ1H1 + · · ·+ θnHn)I

I Criterion is sum of squares of bilinear functions.

Linear mapping

I γ(J) : θ = GJ

I ϕ(I,θ) : t = (H0 + θ1H1 + · · ·+ θnHn)I

I Criterion is sum of squares of bilinear functions.

Linear mapping

I γ(J) : θ = GJ

I ϕ(I,θ) : t = (H0 + θ1H1 + · · ·+ θnHn)I

I Criterion is sum of squares of bilinear functions.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

[ϕ0, γ0]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ [ϕ1, γ0]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ [ϕ1, γ1]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ [ϕ2, γ1]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ [ϕ2, γ2]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

[ϕ3, γ2]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

[ϕ3, γ3]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

γϕ

[ϕ9, γ9]

0 2 4 6 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

0 50 100 15020

25

30

35

40

45

50

iterationsM

SE

I Global optimality for linear ϕ, γ experimentally shown.

Algorithm: iterative minimization of criterion e(ϕ, γ)

ϕ – motion (geometry mapping), γ – appearance mapping

I Iterative minimization:I initialization γ0 = randI ϕ1 = arg minϕ e(ϕ, γ0)I γ1 = arg minγ e(ϕ1, γ)I ϕ2 = arg minϕ e(ϕ, γ1)I γ2 = arg minγ e(ϕ2, γ)I ϕ3 = arg minϕ e(ϕ, γ2)I γ3 = arg minγ e(ϕ3, γ)I until convergence reached

color encodes criterion value e(ϕ, γ)

0 5 10 15 20

22

23

24

25

26

27

28

29

30

31

32

iterationsM

SE

I Global optimality for linear ϕ, γ experimentally shown.

Conclusions

I Learnable and very efficient tracking of objects with variableappearance.

I Accuracy, speed, robustness explicitly taken into account.

I Simultaneous learning motion and appearance.

Limitations

I Small, thin objects intractable.

Data, papers, various implemenations freely available athttp://cmp.felk.cvut.cz/demos/Tracking/linTrack/

Conclusions

I Learnable and very efficient tracking of objects with variableappearance.

I Accuracy, speed, robustness explicitly taken into account.

I Simultaneous learning motion and appearance.

Limitations

I Small, thin objects intractable.

Data, papers, various implemenations freely available athttp://cmp.felk.cvut.cz/demos/Tracking/linTrack/

top related