schott extreme lightweight zerodur mirror (elzm) test results · jwst pmsa test configuration at...

Post on 17-Nov-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Schott extreme lightweight ZERODUR® mirror

(ELZM) test results

Ron Eng, NASA Marshall Space Flight Center

Mirror Tech/SBIR/STTR Workshop Greenbelt, MD November 2, 2016

1

Agenda

• Goals and motivations

• Schott ELZM

• Test facility

• Test setup

• Test results

2

Goals and motivation

• R&D - develop/improve test methods to characterize

lightweight mirror architecture for current and future

telescopes

• Competition - using same test setup and facility to

characterize competing mirror architecture

• Facility – utilize and add capabilities to existing

environmental test facilities

• Model validation - test data used for model validation

• Personnel – testing is labor intensive

• Learning – working with vendors

3

Lightweight ZERODUR Mirror Substrates by SCHOTTZERODUR (5ppb/K) is

on a favorable contourSpecific-

Stiffness/Transient-Response Plane

>30 years in space, > 30 missionsLightweight ZERODUR is derived

from advanced machining at SCHOTT (0.4m to 4.0m) +

deterministic OpFab

SCHOTT 88% Lightweighted ZERODUR Mirror

CostRisk

Lapse

%LW

For 1.2m substrateRoughly < $600K

in < 3 months

Schott ELZM

5

Diameter: 1.2m

ROC: 3.1m

Mass: 45kg; 88% lightweighted

Schott ELZM

6

Schott ELZM and test setup

7

8

JWST PMSA test configuration at XRCF

16 m ROC; ~4 m dia.

6 x 18.3 m test volume

4.25 m dia. Helium cooled shroud

Existing structure prevents testing mirrors with ROC < 3.5 meters

A pressure tight enclosure (PTE) configuration to test mirror with short ROC < 3.5 meter

9

Test configuration for short ROC mirrors

Interferometer and test

support equipment in

pressure tight enclosure

(PTE)

Mirror on test

stand

Thermal shroud

Alignment

stage

AMTD-2 test configuration with PTE

Mirror temp avg 292º K

10

Mirror temp avg 230º K

11

Mirror temp avg 250º K

12

Mirror temp avg 275º K

13

14

test article temperature and pressure data

rms Δ figures

Cycle 1

Cycle 2

ΔT = 2º C 5.9nm rms ΔT = 17 6.5nm ΔT = 42 9.5nm ΔT = 62 11.3nm

ΔT = 1 6nm ΔT = 15 6.9nm ΔT = 39 10.3nm ΔT = 61 10.7nm

Delta surface rms vs temperature

16

36 Zernike terms residual

Cycle 1

Cycle 2

ΔT = 2º C ΔT = 17 ΔT = 42 ΔT = 62

ΔT = 1 ΔT = 15 ΔT = 39 ΔT = 61

mirror rotations at 0, 120, 240 deg.

18

Gravity backout

19

0 deg 120 deg rotation 240 deg rotation

Gravity backout

20

Predicted modal frequencies and shapes

21

Preliminary modal test results

22

196.07 Hz

Acknowledgments

NASA MSFC

Mark Baker, Thomas Brooks, Michael Effinger, Darrell Gaddy, William

Hogue, Jeffrey Kegley, Brent Knight, Rusty Parks, Richard Siler, Phil

Stahl, John Tucker, Ernest Wright

Schott

Tony Hull

Arizona Optical Systems

Marty Valente, David Tiss

23

Backup slides

24

Cycle 1, 230º - 292º Kelvin

25

Cycle 1, 250º - 292º Kelvin

26

Cycle 1, 275º - 292º Kelvin

27

Cycle 1, 290º - 292º Kelvin

28

Cycle 2, 230º - 290º Kelvin

29

Cycle 2, 251º - 290º Kelvin

30

Cycle 2, 275º - 290º Kelvin

31

Cycle 2, 291º - 290º Kelvin

32

top related