scaled dimension of individual strings - swansea filescaled dimension of individual strings contents...

Post on 18-Aug-2019

234 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Scaled Dimension of Individual Strings

Scaled Dimension of Individual Strings

María López-Valdés

Departamento Informática e Ingeniería de SistemasUniversity of Zaragoza

Computability in Europe 2006

Scaled Dimension of Individual Strings

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Dimension

Hausdorff Dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Dimension

Hausdorff Dimension

Why we use Hausdorff dimension?

Let X , Y complexity classes,

then X and Y are sets in the Cantor Space ({0, 1}∞)

(A ⊆ {0, 1}∗ ⇔ χA ∈ {0, 1}∞)

If dimH(X ) 6= dimH(Y ) ⇒ X 6= Y .

But most complexity classes have Hausdorff dimension 0.

Scaled Dimension of Individual Strings

Dimension

Hausdorff Dimension

Why we use Hausdorff dimension?

Let X , Y complexity classes,

then X and Y are sets in the Cantor Space ({0, 1}∞)

(A ⊆ {0, 1}∗ ⇔ χA ∈ {0, 1}∞)

If dimH(X ) 6= dimH(Y ) ⇒ X 6= Y .

But most complexity classes have Hausdorff dimension 0.

Scaled Dimension of Individual Strings

Dimension

Hausdorff Dimension

Why we use Hausdorff dimension?

Let X , Y complexity classes,

then X and Y are sets in the Cantor Space ({0, 1}∞)

(A ⊆ {0, 1}∗ ⇔ χA ∈ {0, 1}∞)

If dimH(X ) 6= dimH(Y ) ⇒ X 6= Y .

But most complexity classes have Hausdorff dimension 0.

Scaled Dimension of Individual Strings

Dimension

Hausdorff Dimension

Why we use Hausdorff dimension?

Let X , Y complexity classes,

then X and Y are sets in the Cantor Space ({0, 1}∞)

(A ⊆ {0, 1}∗ ⇔ χA ∈ {0, 1}∞)

If dimH(X ) 6= dimH(Y ) ⇒ X 6= Y .

But most complexity classes have Hausdorff dimension 0.

Scaled Dimension of Individual Strings

Dimension

Resource-bounded Dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Dimension

Resource-bounded Dimension

Lutz’s characterization

An s-gale is a function d : {0, 1}∗ → [0,∞) such that

d(w0) + d(w1)

2s = d(w).

dimH(X ) = inf{s ∈ [0,∞) | ∃ s − gale d s.t. X ⊆ S∞[d ]},

where X ⊆ S∞[d ] means

∀S ∈ X , lim supn

d(S[0 . . . n − 1]) = ∞.

Scaled Dimension of Individual Strings

Dimension

Resource-bounded Dimension

Lutz’s characterization

An s-gale is a function d : {0, 1}∗ → [0,∞) such that

d(w0) + d(w1)

2s = d(w).

dimH(X ) = inf{s ∈ [0,∞) | ∃ s − gale d s.t. X ⊆ S∞[d ]},

where X ⊆ S∞[d ] means

∀S ∈ X , lim supn

d(S[0 . . . n − 1]) = ∞.

Scaled Dimension of Individual Strings

Dimension

Resource-bounded Dimension

Resource-bounded dimension

Using resource bounds (∆) on d ,

dim∆(X ) = inf{s ∈ [0,∞) |∃ ∆−comp. s−gale d s.t. X ⊆ S∞[d ]}.

For example, we define constructive dimension as

cdim(X ) = inf{s ∈ [0,∞) | ∃ constructive s−gale d s.t. X ⊆ S∞[d ]}.

Scaled Dimension of Individual Strings

Dimension

Resource-bounded Dimension

Resource-bounded dimension

Using resource bounds (∆) on d ,

dim∆(X ) = inf{s ∈ [0,∞) |∃ ∆−comp. s−gale d s.t. X ⊆ S∞[d ]}.

For example, we define constructive dimension as

cdim(X ) = inf{s ∈ [0,∞) | ∃ constructive s−gale d s.t. X ⊆ S∞[d ]}.

Scaled Dimension of Individual Strings

Dimension

Scaled Dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Dimension

Scaled Dimension

Scaled gales

Let g : N× [0,∞) → [0,∞) an scale function,

an scaled sg-gale is a function d : {0, 1}∗ → [0,∞) such that

d(w0) + d(w1)

2g(|w |,s)−g(|w |+1,s)≤ d(w).

dimg∆(X ) = inf{s ∈ [0,∞) | ∃ ∆−comp. sg−gale d s.t. X ⊆ S∞[d ]}

Notice that if g(n, s) = ns, then dimg∆ = dim∆.

Scaled Dimension of Individual Strings

Dimension

Scaled Dimension

Scaled gales

Let g : N× [0,∞) → [0,∞) an scale function,

an scaled sg-gale is a function d : {0, 1}∗ → [0,∞) such that

d(w0) + d(w1)

2g(|w |,s)−g(|w |+1,s)≤ d(w).

dimg∆(X ) = inf{s ∈ [0,∞) | ∃ ∆−comp. sg−gale d s.t. X ⊆ S∞[d ]}

Notice that if g(n, s) = ns, then dimg∆ = dim∆.

Scaled Dimension of Individual Strings

Dimension

Scaled Dimension

Scaled gales

Let g : N× [0,∞) → [0,∞) an scale function,

an scaled sg-gale is a function d : {0, 1}∗ → [0,∞) such that

d(w0) + d(w1)

2g(|w |,s)−g(|w |+1,s)≤ d(w).

dimg∆(X ) = inf{s ∈ [0,∞) | ∃ ∆−comp. sg−gale d s.t. X ⊆ S∞[d ]}

Notice that if g(n, s) = ns, then dimg∆ = dim∆.

Scaled Dimension of Individual Strings

Dimension

Scaled Dimension

Summary

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Definition of dim(w) (Lutz)

cdim(S) = cdim({S}) =

inf{s | ∃ constructive s−gale d s.t. lim supn

d(S[0 . . . n−1]) = ∞}.

To define dim(w):1 We have to replace gales by termgales.2 We have to replace “unbounded as n →∞”.3 We have to use an optimal constructive termgale to make

the definition universal.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Definition of dim(w) (Lutz)

cdim(S) = cdim({S}) =

inf{s | ∃ constructive s−gale d s.t. lim supn

d(S[0 . . . n−1]) = ∞}.

To define dim(w):1 We have to replace gales by termgales.2 We have to replace “unbounded as n →∞”.3 We have to use an optimal constructive termgale to make

the definition universal.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Definition of dim(w) (Lutz)

cdim(S) = cdim({S}) =

inf{s | ∃ constructive s−gale d s.t. lim supn

d(S[0 . . . n−1]) = ∞}.

To define dim(w):1 We have to replace gales by termgales.2 We have to replace “unbounded as n →∞”.3 We have to use an optimal constructive termgale to make

the definition universal.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Definition of dim(w) (Lutz)

cdim(S) = cdim({S}) =

inf{s | ∃ constructive s−gale d s.t. lim supn

d(S[0 . . . n−1]) = ∞}.

To define dim(w):1 We have to replace gales by termgales.2 We have to replace “unbounded as n →∞”.3 We have to use an optimal constructive termgale to make

the definition universal.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Scaled Dimension of individual strings

To define scaled dimension of a finite string:

1 We replace termgales by scaled termgales.2 We prove the existence of an optimal constructive scaled

termgale.3 We define scaled dimension of w using the optimal

constructive scaled termgale.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Scaled Dimension of individual strings

To define scaled dimension of a finite string:

1 We replace termgales by scaled termgales.2 We prove the existence of an optimal constructive scaled

termgale.3 We define scaled dimension of w using the optimal

constructive scaled termgale.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension of individual strings

Scaled Dimension of individual strings

To define scaled dimension of a finite string:

1 We replace termgales by scaled termgales.2 We prove the existence of an optimal constructive scaled

termgale.3 We define scaled dimension of w using the optimal

constructive scaled termgale.

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension vs. Discrete Dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension vs. Discrete Dimension

TheoremFor every S ∈ {0, 1}∞,

1 [Lutz]cdim(S) = lim inf

ndim(S[0 . . . n − 1]).

2 Let g be a scale function,

cdimg(S) = lim infn

dimg(S[0 . . . n − 1]).

Scaled Dimension of Individual Strings

Discrete version of dimension

Dimension vs. Discrete Dimension

TheoremFor every S ∈ {0, 1}∞,

1 [Lutz]cdim(S) = lim inf

ndim(S[0 . . . n − 1]).

2 Let g be a scale function,

cdimg(S) = lim infn

dimg(S[0 . . . n − 1]).

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and discrete constructive dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and discrete constructive dimension

Theorem

1 [Lutz] The Kolmogorov complexity of a string is (up anadditive constant) the product of his length and itsdimension.

|K (w)− |w |dim(w)| ≤ c

2 Let g an scale function,

|g−1(|w |, K (w))− dimg(w)| ≤ c∂g∂s (|w |, 0)

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and discrete constructive dimension

Theorem

1 [Lutz] The Kolmogorov complexity of a string is (up anadditive constant) the product of his length and itsdimension.

|K (w)− |w |dim(w)| ≤ c

2 Let g an scale function,

|g−1(|w |, K (w))− dimg(w)| ≤ c∂g∂s (|w |, 0)

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and constructive dimension

Contents

1 DimensionHausdorff DimensionResource-bounded DimensionScaled Dimension

2 Discrete version of dimensionDimension of individual stringsDimension vs. Discrete Dimension

3 CharacterizationsKolmogorov complexity and discrete constructivedimensionKolmogorov complexity and constructive dimension

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and constructive dimension

TheoremFor every S ∈ {0, 1}∞,

1 [Mayordomo, Lutz]

cdim(S) = lim infK (S[0 . . . n − 1])

n.

2 Let g be a scale function,

cdimg(S) = lim inf g−1(n, K (S[0, . . . n − 1])).

Scaled Dimension of Individual Strings

Characterizations

Kolmogorov complexity and constructive dimension

TheoremFor every S ∈ {0, 1}∞,

1 [Mayordomo, Lutz]

cdim(S) = lim infK (S[0 . . . n − 1])

n.

2 Let g be a scale function,

cdimg(S) = lim inf g−1(n, K (S[0, . . . n − 1])).

Scaled Dimension of Individual Strings

Summary

Summary

Dimensions are tools that were defined to distinguishbetween complexity classes.

We can define a discrete version of constructive dimensionand constructive scaled dimension.

Constructive dimensions of (finite and infinite) sequencescan be characterized in terms of Kolmogorov complexity.

Scaled Dimension of Individual Strings

Appendix

For Further Reading

For Further Reading I

J.H. Lutz.Dimension in Complexity Classes.SIAM Journal on Computing, 32:1236–1259, 2003.

J.H. Lutz.The dimensions of individual strings and sequences.Information and Computation, 187:49–79, 2003.

E. Mayordomo.A Kolmogorov complexity characterization of constructiveHausdorff dimension.Information Processing Letters, 84(1):1–3, 2002.

top related