research report on life cycle cost calculation o.univ.prof. dipl.-ing. dr.techn. hans georg jodl...

Post on 29-Jan-2016

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Research report onLife Cycle Cost Calculation

O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl

Institute of Interdisciplinary Construction Project Management

Faculty of Civil Engineering

Vienna University of Technology

Университет по архитектура, строителство и геодезия (УАСГ)2012-11-14

hans.jodl@tuwien.ac.at

Content

1. Introduction

2. Calculation model LCC Bridge

3. Calculation model LCC Window

4. Calculation model LCC Metro station

5. Calculation model LCC Grooved Rail

6. Conclusion

IntroductionIntroduction

hans.jodl@tuwien.ac.at 4

Life cycle cost

• Life cycle divided in phases - periods

• Holistic perception of cost trends over the whole expected service life

• Cost groups during life cycleo Planning costs

o Building costs

o Cost of maintenance during utilisation

o Unexpected costs (optional)

o Cost of demolition at end of life cycle

hans.jodl@tuwien.ac.at 5

Example of life cycle phases

Planning phase e.g. 5 yearsConstruction phase e.g. 3 yearsUtilisation phase e.g. 70 yearsDemolition phase e.g. 2 yearsLife cycle e.g. 80 years

hans.jodl@tuwien.ac.at 6

Current targets of optimisation

• Predominant investment during construction phase

• Less investment during utilisation

• Usual focus on optimisation for construction phase

• Construction cost are only reliable cost available

• Hence construction cost are reference base of further cost calculation

hans.jodl@tuwien.ac.at 7

Planning strategy

• Parameters for choice of system, quality of material and construction

• Parameters impact level of expense during utilisation phase decisively

• Targets of strategic planning of structure at budgeting of sustainable objects:

to aspire maximum of service life

to aim for minimum of costs

to meet function without restriction

hans.jodl@tuwien.ac.at 8

Sustainability and life cycle

Sustainability just a buzzword ?? Keeping house sustainable – when

following the philosophy of 3P3P

• Sustainability is serving people PPeople

• Conserving living environment for the next generation PPlanet

• Sustainable projects must earn money PProfit

hans.jodl@tuwien.ac.at 9

Structure of user specific cost

• Acquisition cost– Financing cost – Total cost

• Follow-up costs– Utilisation cost

• Capital cost• Capital consumption• Taxes and dues• Administration cost• Operating expenses• Maintenance cost

– Demolition cost

hans.jodl@tuwien.ac.at 10

Life cycle cost calculation

• Life cycle cost are calculated for one single life span

• Simplified calculation of LCC with only 3 input parameters:o CC [€] .. construction cost

o m [a] .. theoretical service lifeo p [%] .. percentage of building cost CB

• Calculation with final value (accumulated to future) present value (discounted to present)

hans.jodl@tuwien.ac.at 11

Final value – present value

Δt

Δt

eMaintenancannualpresent

eMaintenanc

Δt

future

Δtfinalpresent

q

1

1q

1qVV

q

V

z1

1VV

1q

1qVV

q*Vz1*VVΔt

eMaintenancannualfinal

eMaintenanc

Δt(cash)presentΔt(cash)present)(futurefinal

Final (future) value calculation - accumulated

Present (cash) value calculation - discounted

Calculation model Calculation model LCC BridgeLCC Bridge

Roman arched bridge across river Tajo in Alcántara / Spain

hans.jodl@tuwien.ac.at 13

• Computer program for LCC calculation• Variables used as multiplying factors for

• Theoretical utilization time• Percentages of annual maintenance cost

• Two calculation models depending on appliance • Life cycle model with defined life span

• LCC calculation with final value• LCC calculation with present value

• Redemption model• presupposing unlimited life span and maintenance

Aim of Research

hans.jodl@tuwien.ac.at 14

Program targets

• Creation of a consistently applicable tool

for calculation of life cycle cost of a single

bridge

• Desired possibilities of application:• Comparison of bridges

• Comparison of variants

• Optimisation of planning process

• Checking of costs

• Redemption → change of upholder

• Leasing of bridges

hans.jodl@tuwien.ac.at 15

Matching coefficients

• Adaption of tabular values of redemption guideline using matching coefficients for special cases: o Variance of construction guidelineso Exceeding of normative defaultso Consideration of new material technologyo Experimental projectso Accreditation of construction elementso Assessment of alternative offers

• Quality criteria for planning bridgeso Adaptability for road bridgeso Additional criteria

hans.jodl@tuwien.ac.at 16

Key table of redemption guidelineBauliche Anlagentheoretische Nutzungsdauer m und %-Satz der jährlichen Unterhaltungskosten p

m [a] p [%]

1 Unterbau

Widerlager, Flügelwände, Pfeiler, Stützen, Pylone (jeweils inkl. Gründung)1.1 aus Mauerwerk, Beton, Stahlbeton 110 0,51.2 aus Pfahlwänden, Schlitzwänden 90 0,51.3 aus Stahlspundwänden aus Stahlspundwänden ohne Korrosionsschutz 50 0,6 aus Stahlspundwänden mit Korrosionsschutz 70 0,51.4 aus Stahl 100 0,81.5 aus Holz 50 2,0

2 Überbau: Tragkonstruktionen (Balken, Platten, Bögen, Kastenquerschnitte)2.1 aus Stahlbeton 70 0,82.2 aus Spannbeton aus Spannbeton mit internen Spanngliedern 70 1,3 aus Spannbeton mit externen Spanngliedern 70 1,12.3 aus Stahl 100 1,52.4 aus Stahl-Beton-Verbundkonstruktionen Stahltragwerke mit Betonplatte 70 1,2 Walzträger in Beton 100 0,8 Stahlträger in Beton mit Doppelverband (z.B. Preflexträger) 100 0,52.5 aus Holz

für Geh- und Radwege ohne Schutzdach 40 2,5 für Geh- und Radwege mit Schutzdach 50 2,0 für Straßen 40 2,5

3 Rahmenartige Tragwerke (einschl. Gründungen)

Geschlossene Rahmen, unten offene Rahmen, vergleichbare Rahmenkonstruktionen3.1 aus Stahlbeton 70 0,83.2 aus Spannbeton 70 1,23.3 aus Stahl 100 1,5

4 Gewölbe (einschl. Gründungen)4.1 Mauerwerk, Beton 130 0,64.2 Stahlbeton 110 0,5

5 Wellstahlrohre einschl. Flügelwände und Gründungen 70 0,86 Ausrüstung

6.1 Ausrüstung C1: umfasst 30 % der gesamten Ausrüstungskosten 20 1,56.2 Ausrüstung C2: umfasst 70 % der gesamten Ausrüstungskosten 30 1,2

Tabular values

of life span

Tabu

lar va

lues o

f

perce

ntag

e of m

ainte

nanc

e cos

t

Main structuree.g. Base course

Structural elements

e.g. reinforced concrete

hans.jodl@tuwien.ac.at 17

Matching coefficient ► durability of structure

Negative impact on structure may require adjustment of concrete quality.• Tabular values for concrete cover dconcrete = 3,5 cm (usual)

• Increase of concrete cover to 4,0 cm (6,0 cm) results in higher durability positive impact (life span) more concrete and reinforcement negative impact (cost)

00,100,1

cost%8,0Years70

pm

concreteconcrete

kk

pm

cost%68,085,0*8,07710,1*70

85,010,1

cost%8,070

newconcretenewconcrete

newpnewm

concreteconcrete

pyearsm

kk

pyearsm

hans.jodl@tuwien.ac.at 18

Calculation model LCC Bridge

• Comparison of different bridges

• Commitment of parameters• Fixed interest rate of capitalisation 4 % p.a.

• Fixed values depend on structure and construction

• theoretical service life (life span) m [a]

• annual maintenance cost CaM → percentagep [%] of building cost CB = CC + CAC

hans.jodl@tuwien.ac.at 19

Construction cost CC

• Calculation based onCONSTRUCTION COSTCONSTRUCTION COST CCCC

only reliable well-established value

• Construction cost CC contain:

• Production cost of construction units

• Related miscellaneous works

• Clearance of traffic, site protection

• Generation of execution documents, plans

• Difficulties for third parties

hans.jodl@tuwien.ac.at 20

Calculation with final value method

fvfvfv

fv

CDfvD

m

C

m

aMfvM

mC

mB

fvB

LCCLCCLCCLCC

CCLCC

q

qpC

q

qCLCC

qCqCLCC

DMB

22,0

1

110,1

1

1

10,1*

Building cost CB = CC + CAC = CC* 1,10

Administration cost CAC = 0,10 * CC

Annual maintenance cost CaM = CB * p = CC*1,10 * p

Dismantling cost CD = CDem + CAD = 0,20 * CC + 0,10 * CDem = CC* 0,22

hans.jodl@tuwien.ac.at 21

Screen shot examples of cost schedule

sum of costsconstruction costannual maintenance costdemolition cost

schedule of no-interest cost of equipment

schedule of interest costof equipment schedule of total

interest cost

schedule of no-interest cost of main structure

no-interest cost

cost scheduleconstruction costannnual maintenance costdemolition cost

hans.jodl@tuwien.ac.at 22

results

data back-up

data setting

pdf.report data

present value1953

Final value2023

graphics

graphic data

Report of resultsLife cycle cost model

Calculation model Calculation model LCC WindowLCC Window

Outside temperature,rain, wind, sun, noise

Net weightBuilding movement

Window movement Room temperaturehumidity

hans.jodl@tuwien.ac.at 24

Windows in municipal housing

Life cycle consideration is strongly attracting notice

Window critical part of the building shell

Alu-material light, stiff, bearing, easy recycling

Coating long-lasting surface free of maintenance

Little maintenance only on changing parts

Intensive mechanical load rough usage in social flats rapid mechanical wear

Durability = service life + behaviour of user

Life cycle consideration decisive for evaluation of sustainability and intrinsic value

hans.jodl@tuwien.ac.at 25

Acid laboratory test of 3 window types

French window single frame Window

single frame

Casement window double frame

Tested frame material of windows: aluminium

hans.jodl@tuwien.ac.at 26

Calculation basis

hans.jodl@tuwien.ac.at 27

LCC single frame window alu versus plastic

positionsALUMINIUM-window

single frame

usefullife

[years]cost[€]

Base + frame + glass 60 644Hold + fittings 40 91Gaskets 25 59Controling period/Σ 60 794

cost appearanceALUMINIUM-window

single frame

costno-interest

[€]

LCCinterest rated

[€]Base + frame + glass 644 6.775Equipment (Fr+HoF+Ga) 359 2.097Wages (60 €/action) 180 457Maintenance (0,25%/year) 119 491Sum after 60 years 1.302 9.820Present value 794 934

positionsPLASTIC-window

single frame

usefullife

[years]cost[€]

Base + frame + glass 25 411Hold + fittings 25 91Gaskets 25 59Controling period/Σ 25 561

cost appearancePLASTIC-window

single frame

costno-interest

[€]

LCCinterest rated

[€]Base + frame + glass 1.233 6.554Equipment (Fr+HoF+Ga) 450 2.392Wages (60 €/action) 120 326Maintenance (2,5%/year) 841 3.471Sum after 60 years 2.645 12.743Present value 561 1.211Change spare parts:

wages (work) &material (equipment) all-inclusive.

hans.jodl@tuwien.ac.at 28

LCC single frame window - ALU

First change of window after 60 years

Equipment:Fittings, hold (40 a), gaskets (25 a)

hans.jodl@tuwien.ac.at 29

Comparison of frame-material

WoodPlastic

Wood-Alu

ALU

26

LCC of single frame French window

hans.jodl@tuwien.ac.at 30

26

LCC on example of a municipal flat (all material)

Plastic

Wood

Wood-Alu

ALU

Typical flat with 5 single frame windows and 1 single frame French window

hans.jodl@tuwien.ac.at 31

Future requirements on windows

• Guidelines are tightening requirements on windows

• Future coefficient of heat transmission is very low: UW 1,0 W/m²K

• Future increase of window weight expected because of multiple glazing and rising thickness of glass.

• Modern alu-windows are high quality systems with• Good heat insulation

• Long service life

• Practically free of maintenance

• Durability depends on combinationof service life and user behaviour.

• Window material aluminium expecting tomeet stronger future requirements reliably.

Calculation model Calculation model LCC Metro stationLCC Metro station

hans.jodl@tuwien.ac.at 33

Metro cost structure / maintenance

hans.jodl@tuwien.ac.at 34

Cost composition LCC

Dimension: m1, m , m , to, piece, etc.² ³

²

€²][ LCC*quantitycategorycostLCC

mam

hans.jodl@tuwien.ac.at 35

Whereof is surface depending on?

Impact of structure on design …

• Upper level - deep level

• Crossing station

• Central platform - lateral platform

• …

Auxiliary means for quantity prediction

• Comparison of existing stations

• Statistical analysis

• Design guidelines

• Expert experience

Prediction of quantity

hans.jodl@tuwien.ac.at 36

5 12 15 20 21 24 26 27 28 33

Linien Station Fläche Bahnsteig Gang Halle Lager/Archiv Leerraum Passage Sanitärraum Stiege Technikraum Sonstiges

1 Aderklaaer Straße 3.744,42 1.057,70 1.309,77 0,00 100,61 102,66 167,37 14,51 127,89 812,44 51,471 Alser Straße 2.791,00 703,57 37,85 0,00 65,07 0,00 0,00 43,37 0,00 170,71 1.770,431 Alte Donau 3.056,06 1.102,00 575,00 180,00 420,64 27,36 0,00 33,00 354,00 341,00 23,061 Alt Erlaa 2.238,00 857,00 78,00 164,00 40,00 0,00 138,00 21,00 155,00 345,00 440,001 Am Schöpfwerk 2.191,00 1.052,00 50,00 274,00 193,00 0,00 0,00 11,00 266,00 287,00 58,001 Aspernstraße 4.793,64 1.262,12 168,54 0,00 167,09 0,00 670,05 38,39 0,00 2.018,70 468,751 Braunschweiggasse 1.728,00 760,00 275,00 113,00 87,00 0,00 0,00 12,00 104,00 274,00 103,001 Burggasse 1.661,00 1.076,00 3,00 0,00 13,00 0,00 0,00 12,00 288,00 113,00 156,001 Donauinsel 2.721,00 760,00 1.199,00 233,00 90,00 0,00 0,00 40,00 125,00 274,00 0,001 Donaumarina 3.318,77 1.244,12 194,48 0,00 38,08 0,00 403,43 0,00 136,84 1.228,97 72,851 Donauspital 3.129,83 1.013,16 106,54 0,00 72,70 0,00 281,38 10,04 0,00 1.381,09 264,921 Donaustadtbrücke 3.297,40 1.201,01 301,51 0,00 68,08 0,00 251,46 12,64 39,96 1.398,19 24,551 Dresdner Straße 3.189,00 1.168,00 642,00 93,00 349,00 0,00 0,00 17,00 150,00 659,00 111,001 Enkplatz 7.173,11 898,00 2.332,53 0,00 694,00 227,15 523,00 23,86 560,69 1.744,70 169,181 Erdberg 4.101,00 989,00 362,00 0,00 85,00 0,00 418,00 72,00 262,00 1.080,00 833,001 Erlaaer Straße 1.680,00 828,00 52,00 159,00 197,00 0,00 0,00 11,00 130,00 256,00 47,001 Floridsdorf 10.039,00 1.620,00 2.870,00 0,00 1.287,00 153,00 1.830,00 239,00 297,00 1.347,00 396,001 Friedensbrücke 2.645,00 1.522,00 32,00 35,00 184,00 20,00 0,00 21,00 111,00 406,00 314,001 Gasometer 3.862,97 900,00 1.151,00 256,00 20,00 0,00 0,00 25,92 243,00 1.002,25 264,801 Großfeldsiedlung 3.845,54 1.000,55 1.349,75 196,84 40,66 132,49 0,00 13,56 126,40 923,84 61,451 Gumpendorfer Straße 1.630,00 889,00 15,00 146,00 54,00 0,00 0,00 27,00 196,00 162,00 141,001 Handelskai 6.062,00 1.446,00 640,00 1.090,00 125,00 996,00 0,00 66,00 489,00 992,00 218,001 Hardeggasse 3.153,00 1.067,04 139,56 0,00 54,63 0,00 265,46 11,31 0,00 1.472,64 142,361 Heiligenstadt 6.329,68 1.740,00 1.126,00 1.353,00 562,00 0,00 260,00 57,00 72,00 988,68 171,001 Herrengasse 3.166,00 928,00 675,00 0,00 36,00 0,00 358,00 20,00 203,00 702,00 244,001 Hietzing 2.309,00 994,00 96,00 258,00 191,00 54,00 0,00 38,00 134,00 426,00 118,001 Hütteldorf 9.941,47 1.342,00 767,00 164,00 839,00 230,00 308,00 123,00 261,00 565,00 5.342,471 Hütteldorferstraße 7.265,35 1.231,00 1.361,00 33,00 472,00 107,00 1.063,00 34,35 349,00 1.532,00 1.083,001 Jägerstraße 4.377,00 1.118,00 1.273,00 261,00 642,00 0,00 0,00 14,00 288,00 678,00 103,001 Johnstraße 10.444,00 1.145,00 1.941,00 285,00 1.011,00 80,00 541,00 126,00 685,00 4.167,00 463,001 Josefstädter Straße 1.491,00 668,00 16,00 143,00 61,00 0,00 0,00 37,00 277,00 132,00 157,001 Kagran 6.548,10 1.006,00 764,18 413,00 1.538,30 12,00 0,00 137,52 170,00 1.261,00 1.246,101 Kagraner Platz 7.644,04 1.024,00 1.996,71 346,42 13,50 1.569,21 0,00 46,79 275,17 2.130,80 241,441 Kaisermühlen 6.337,00 860,00 1.245,00 668,00 1.408,00 6,00 0,00 37,00 1.175,00 799,00 139,001 Kardinal Nagl Platz 3.550,00 745,00 870,00 207,00 87,00 10,00 0,00 2,00 130,00 1.472,00 27,001 Kendlerstraße 4.413,00 1.092,00 1.561,00 379,00 151,00 0,00 0,00 20,00 417,00 617,00 176,001 Keplerplatz 3.219,00 723,00 933,00 116,00 168,00 0,00 331,00 49,00 142,00 679,00 78,001 Kettenbrückengasse 2.196,00 848,00 265,00 141,00 12,00 0,00 0,00 13,00 170,00 160,00 587,001 Krieau 3.402,87 1.206,12 41,34 0,00 34,97 24,79 422,05 13,95 0,00 1.479,74 179,911 Leopoldau 6.887,81 1.054,64 1.277,12 99,20 114,30 0,00 1.245,13 51,04 0,00 2.157,16 889,221 Margaretengürtel 1.705,00 770,00 250,00 144,00 62,00 0,00 0,00 14,00 158,00 173,00 134,001 Meidling-Hauptstr. 4.565,40 1.898,00 234,00 0,00 850,00 28,00 86,00 69,00 209,00 932,40 259,00

Einz

elst

ation

en

Methods of quantity prediction Example - comparative analysis

268 m² exceeded floor space required

central platform 1.167 m² (+ 30%)

lateral platform 899 m²

Example - statistic analysis:Lateral platform – central platform

Statistical mean value of floor space required

Area in m²

hans.jodl@tuwien.ac.at 37

Modelling step 1 – quantity estimation

hans.jodl@tuwien.ac.at 38

Model step 2 – cost development

Cost increase Interest yield

Prediction required

hans.jodl@tuwien.ac.at 39

Price index – exponential increase ?

No exponential increase

hans.jodl@tuwien.ac.at 40

Cost increase - exponentially or linear ?

linear cost increase instead of exponential

1 € with 6% yield over 100 years has accrued to 339 €

hans.jodl@tuwien.ac.at 41

Comparison - cost increase and interest yield

2010

Prediction of cost increase to 50 years (2060)

Building price index housingConsumer price indexStandard wage indexBuilding price index high-buildingBuilding price index bridgeBuilding price index mean value

4.000 €14.000 €

SumSupplyCleaningMaintenanceRepairMaterial

Interest yield trend

0 %4 %

hans.jodl@tuwien.ac.at 42

→ time of investment equal !!

Cumulativeness yield essential ??

200€100€5a

100€ 200€30a 5a

30a

35a

→ time of investment essential !!

Jesus Christ’s bank account with 1,0 € after 2012 yearsinterest yield 1% → 1,0*1,012012= 494.998.691 €interest yield 4% → 1,0*1,042012= 18,66733 € →

18.667.178.019.592.100.000.000.000.000.000.000 €18.667.17827 EUR

hans.jodl@tuwien.ac.at 43

Accuracy of the model ?

LCC Model Data

Decision support(floor covering)

LiteratureCalculative approachInvestor experience

Research in progress

on demand of investor

Calculation model Calculation model LCC RailLCC Rail

hans.jodl@tuwien.ac.at 45

LCC Railway - existing problem

Abrasion of railway not clearly definable Different investigation for metro and tram Decisive impact-factors on LCC unknown

hans.jodl@tuwien.ac.at 46

Focus of research

Influences of railway alignment (curve radius, shunting switches etc.)

Internal influences:• number of passengers

• number of lines on the same route

• type of carriages used on the route (low-floor/high-floor carriages)

External influences (road traffic) Analysis of RAMS-parameter

ConclusionConclusion

hans.jodl@tuwien.ac.at 48

• Life cycle cost research is a up-to-date task

• Budgeting for building construction is usual

• Budgeting for maintenance is not usual

• Investments in maintenance and repair are not sexy but extremely necessary

• Huge data bases exist but data allocation is missing

• Public infrastructure companies seek for anticipatory budget planning

• Scientific confirmed data and cost are required

• There is still a lot of research work to be done

БЛАГОДАРЯ ЗА ВНИМАНИЕТО!

O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg JodlInstitute of Interdisciplinary Construction Process ManagementVienna University of Technology

УАСГ- гр.София

top related