progenitors : mass loss determines sn type

Post on 23-Feb-2016

24 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Why is circumstellar interaction of SNe important?. Progenitors : Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core) Ejecta structure : Shock dynamics probes density structure of SN ejecta - PowerPoint PPT Presentation

TRANSCRIPT

Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core)

Ejecta structure: Shock dynamics probes density structure of SN ejecta

Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio) Relativistic particle acceleration

Dust production

SN – GRB connection: GRB afterglow determined by circumstellarenvironment of the SN.

Why is circumstellar interaction of SNe important?

Mass loss processes

I. Single stars Blue SGs u ~ 500 – 3000 km/s dM/dt 10-7 – 10-5 MO /yr

Red SGs u ~ 10 – 50 km/s dM/dt 10-6 – 10-4 MO /yr

Superwinds (cf. AGB's): Heger et al (1997) find large amplitude pulsations with several MO per 10,000 years dM/dt ~ 10-4 MO/yr

II Binaries Winds RL overflow, common envelope phases....

SN 1993Jin M 813.6 Mpc

Best studied CS case: SN 1993J

Evidence for CS interaction

Radio: Synchrotron spectrum Wavelength dependent turn-on of emission All types of core collapse SNe observed

SN 1993JIIb

Van Dyk et al 1994, Weiler, Panagia, Sramek 2002

1.3 cm

21 cm

SN 1979CIIL

Montes et al 2000

1.3 cm 21 cm

Sramek (2002)

All types of core collapse SNe detected (IIP, IIL, IIn, Ib, Ic).No Type Ia SNe!

SN 1993J VLBIBartel et al Marcaide et al.

3 Jun 1998

17 May 1993

Optical Type IIbFilippenko et al 1994Fransson et al 2004

Box-like line profiles narrow emitting shell

Transition from Type II toType Ib

Type IIn SNe

Narrow lines fromdense CSM. Strong CSinteraction.

SN 1993J ROSAT PSPC Zimmermann et al

Power law for V > 3500 km/s V-10 - V-12

Ejecta structure

SN 1987A

2 rρcsn

ej rρ

Kkm/s10

10x4.12

49

VTCS K1010

)2(76

2

nTT CS

reverse

)2/(1

)2/()3(

n

s

nns

tV

tR

Chevalier (1982)Chevalier & CF (1994)

Shock structure

Chevalier & Blondin 1995

Fransson et al 1996

Line profiles (Filippenko 1997)

Broad line SNe: IIL, IbNarrow line SNe: IIn

1. ej >> CSM Type IIL, IIb SN 1993J, SN 1979C

Steady wind

Line width ~ Vej

2.ej << CSM Type IIn… SN 1995N, SN 1998S Blobs, rings, short-lived superwinds… SN 1987A

Line width ~ Vblast << Vej

Two cases for the line widths

blastblastej

CSMrev VVV

2/1

blastblastej

CSMrev VVV

2/1

Reverse CD Blast wave

ejecta CSM

VsVrev

SN 1993J X-rays

ROSAT 01. - 2.4 keV (Zimmermann et al 1994, Immler et al 2002)

ASCA 1 – 10 keV (Uno et al 2002)

COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994)Chandra (Swartz et al 2002)

XMM/Newton (Zimmermann & Aschenbach 2003))

t < 50 days kT ~ 100 keV Lx 5x1040 erg/s 50 - 200 keV 2x1039 erg/s 0.1 - 2.4 keV

t > 200 days kT ~ 1 keV Lx 1x1039 erg/s 0.1 - 2.4 keV

Transition from hard to soft spectrum!

Zimmermann & Aschenbach 2003Te

mpe

ratu

re (k

eV)

Day after explosion

X-ray evolution

At 10 days: Only X-rays from outer, CS shock T~109 KAt 200 days: X-rays from reverse shock dominates T~107 K

CF, Lundqvist & Chevalier 1996

Hard to soft evolution natural consequence of the cool shell

X-ray spectra useful probes of theejecta composition

solar helium zone

carbon zone oxygen zone

Nymark et al 2006

Nymark, Chandra, CF 2007data: XMM Zimmermann & Aschenbach Chandra: Swartz et al 2003

SN 1993J

CNO enriched H or He envelope

Cool shell, reverse shock SN ejectapartially ionized, T<7000K fully ionized neutral, T ~ (1-3)x104 KH, Mg II, Fe II O III-IV, N III-V, Ne III-V

UV & optical line emission

SN 1993J

Good fit with ejecta + cool, dense shellShock at ~ 10,000 km/sConsistency of X-ray flux and UV/optical flux

HST (SINS) + Keck

HHe I

Mg II

[O III]

SN 1979CIIL

Montes et al 2000

1.3 cm 21 cm

SN 1993JIIb

Van Dyk et al 1994, Weiler, Panagia, Sramek 2002

Radio light curves

RADIO

Free-free absorption by the CSM

wwe

we

uMtV

uMTdrrn

tVrur

Mrn

.

33exp

2.

2/322

exp2

.

1)()()()(

4)(

Twind ~ 105 K (Lundqvist & CF 1989)

Good fit to Type IIL SNe (SN 1979C, 1980K…..)

Reliable mass loss rates needcalculation of Twind

Synchrotron self-absorption

1

1

)(

/

)1)((

2/52/12

rel12

rel2/32/5

2/52/1

)(2

BRF

NBRF

NB

BjS

eSRF

)(),(1),(&exp tNtBttVR rel

F

2/5F

SN 1993J

SSA + free-free

SSA only

Fransson & Björnsson 1998

Magnetic field and particle density in SN 1993J

1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987)

Amplification of B-field behind shock. Turbulence? (Jun & Norman 1996)2. UB/Utherm 0.15 3. Urel Utherm

GcmRB s

1

151064

)2/()3( nnmtR ms

22relthermrelrel 8

9 tρVUU s

2srel ρVn

windrel nn

Obs: VLA: van Dyk et al 1994,

Weiler, Panagia, Sramek 2002

CF & Björnsson 1998

Model and SN 1993J VLA light curves

csm r-2 OK!! No evidence for mass loss variations or s 2.2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays3. Injection spectrum nrel -2.1. Synchrotron cooling steepens this!

Assume: UB Utherm, Urel Utherm

Self-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer

Chevalier 1998

SSA

FF

Free-free vs synchrotron self-absorption

VLBI and H velocity for different ejecta models

Red = HBlack = VLBI/1.3

VLBI and H velocity evolution require asteep density gradient at ~ 13,000 km/s

Mass loss rates

Type IIP's dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK

Type IIL's dM/dt 2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1). 'super wind' (Heger et al) t = Vs/u tobs 5x102 tobs > 104 / (u/10 km s-1) yrs i.e., several MO lost

Type IIn's dM/dt 10-4 -10-3 MO yr-1 (for u = 10 km s-1). super wind Clumping (Chugai)? Asymmetric wind (Blondin, Chevalier, Lundqvist)?

Type Ib/c's dM/dt 10-7 - 10-5 MO yr-1 (for u = 1000 km s-1). WR stars? Mass loss rate uncertain

SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> 1 (Fransson et al 1989, 2001, 2004)

SN 1998S N/C ~ 6SN 1995N N/C ~ 4SN 1993J N/C ~ 12SN 1987A N/C ~ 5SN 1979C N/C ~ 8

Solar N/C ~ 0.25

SN 1998S HST (SINS)

CNO burning

N/C >> 1 CNO burning heavy mass loss + mixing

N/C increases with mass loss

Meynet & Maeder 2003

40 M at ZAMS

N/C >> 1 CNO burning heavy mass loss + mixing

N/C strong fcn of mass loss40 M at ZAMSMeynet & Maeder 2003

SN 1993J modelWoosley et al 1994

N/C >> 1 CNO burning heavy mass loss + mixing

N/C strong fcn of mass lossMeynet & Maeder 1992

SN 1993J modelWoosley et al 1994

Conclusion of CNO:

SN 1993J modelWoosley et al 1994

Progenitors must have lost most of the hydrogen envelopebefore explosion

Confirms mass loss as the important factor for the SN Type

SAINTS collab.SN 1987A ring collision

Origin of the rings

R ~ 1018 cm, Vexp ~10 km s-1 tdyn ~2x104 years

N/C ~ 5

Origin (?): Merger inducing the equatorial mass loss and outer rings (Podziadlowski 1992, Heger & Langer 1998, Morris & Podziadlowski 2005)

Can this happen in a Ic progenitor? Late SN2001em emission (Chugai & Chevalier 2006)

Chandra & ATCA

Park et alManchester et al

Dust emissionBouchet et al 2006

T ~ 166 KSi featurecollisionally heated

Spitzer

Gemini S + Spitzer

11.7 18.3

Gröningsson et al 2006

VLT/UVES

FWHM ~ 6 km s-1

Seeing 0.5-0.8”

Resolves N/S

Gröningsson et al 2006

H

narrow

[O III] 5007

Narrow FWHM ~ 10 km s-1 from unshocked ring Broad Vmax 300-400 km s-1 from shocked ring (Pun et al 2002)

broadHe I

Gröningsson et al (2006)Smith et al (2006), Heng et al (2006)

Velocity (104 km/s)

Reverse shock

Broad ~16,000 km/s emission from reverse shock going back into ejecta

VLT/FORSDec 2006

2002

2000

Intermediate velocity lines from shocked ringprotrusions

Gröningsson et al 2006

Oct 2002

N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1. Max extension ~ 300 km s-1

VLT/SINFONI

March 2005 He I 2.06

Kjaer et al 2007

Adaptive optics integral field unit for J, H, K

Expansion velocities along ring J-band

VLT/UVES spectrum

Max. velocity ~ shock velocity ~ 300-400 km/s

Coronal lines Gröningsson et al 2006

Fe XIV 5303 Ts ~ 2x106 K

H, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock intoring protrusions

Borkowski et al 1997Pun et al 2002

Hydrodynamics of ring collision

Optical emission from radiativeshocks into the ring materialRadio and hard X-rays from reverse shock

Borkowski et al 1997

shock

Radiative shock structure

Post-shock densities ~5x106 - 107 cm-3. Agrees with nebular diagnostics

photoion. precursor narrow Ha, [N II], [O III]

coll. ioniz. X-raysCoronal lines

photoion. broad H, [OIII],…

Vs = 350 km/s no = 104 cm-3

shock

Optical lines probe different temperature intervals in the cooling gas behind the radiative shocks

Te

Fe

Shock velocity into hot-spots 300 – 400 km s-1 Ts ~ 2x106 K

Coronal lines complement the X-rays to probe whole temp. range

Shock velocity

Coronal line diagnosticsGröningsson, Nymark…

Chandra: Zhekov et al (2005, 2006) also XMM by Haberl et al

X-rays

N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII…..

Two components: High density (104 cm-3) kT ~ 0.5 keV + Low density (102 cm-3) kT ~ 3.0 keV

Optical/UV from radiative shocks

Soft X-rays from radiative + adiabatic shocked ring blobs

Hard X-rays and radio from adiabatic reverse shock

A radiative shock gives X-rays, UV, optical, IR

Expect correlation between optical/UV and soft X-rays, but not with hard and radio

Time evolution

Coronal lines and soft X-rays correlate. Soft X-rays from hot-spots. Hard from reverse shock & blast wave

Optical: Gröningsson et alX-rays: Park et al 2005

Line widths of low ionization ions increase with time 2000: ~ 250 km s-1 -> 2006: ~ 450 km s-1 . Coronal lines ~ constant ~ 450 km s-1

Cooling shocks

Cooling shocks

1

4

3.4

1 103008

3

escool cm

nskm

Vt yrs

High velocity shocks seen in soft X-rays gradually become radiative

Now, H up to ~ 450 km s-1

ne up to ~ 4x104 cm-3 ~ ring density (Lundqvist & CF 96)

Expect this to continue to higher shock velocities

Narrow, unshocked linesUnshocked ring ionized by SN shock breakout, then recombiningRing is now ionized by X-rays from shocks. Come-back of narrow lines

Pre-ionized region ~ 5x1017 (n/104 cm-3 )-1 cm

Shock models:Most of absorbed X-raysin pre-shock gas are re-emitted as [O III]

We are now starting tosee the re-ionization of the ring!

top related