prof soha talaat cairo university :obstetric us

Post on 28-Jan-2015

108 Views

Category:

Health & Medicine

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

 

TRANSCRIPT

الوا سبحانك ال علم لنا الوا سبحانك ال علم لنا قق إال ما علمتناإال ما علمتنا

إنك أنت العليم الحكيمإنك أنت العليم الحكيم

بسم الله الرحمن الرحيم

هوالذي يصوركم في آل عمران آية األرحام كيف يشاء

6

بسم الله الرحمن الرحيم

هوالذي يصوركم في آل عمران آية األرحام كيف يشاء

6

Sonographic diagnosis of pregnancy

• First sonographic evidence: 24 days postfertilization = intrauterine gestational sac (5th week gestation sac visualized within the uterine corpus as an echogenic ring with a hypoechoic interior)

The sac is measured inside the hyperechoic rim, including only the echo-

free space.

• The GS is imaged first in the longitudinal plane, obtaining long axis and AP measurements perpendicular to each other. Then, in the transverse plane at the level of the anteroposterior measurement, the width measurement is obtained.

• Measurements are averaged to obtain the GS mean diameter.

Development in the 1st trimesterEmbryo:• 6 to 8 weeks embryo appears as a

uniform echogenic structure within the gestational sac.

• 8th week: A head and trunk can be identified. (Head/Trunk ratio : 50%)

• The physiological umbilical hernia may be seen in few cases.

• 9th week: Evidence of limbs.• 11th week: Increased differentiation of the

skull, trunk, limbs and of the organ systems established during the embryonic period, with progressive ossification the skull is recognized as consisting of a frontal bone, orbits, maxilla and mandible.

• by the 12th week, the fetal spine

CROWN RUMP LENGTH(CRL)

• Accurate date pregnancy between 7 and 13 weeks' gestation.

• Measurement of the fetal length from the tip of the cephalic pole to the tip of the caudal pole.

• The fetus should be at rest and assuming its natural curvature.

Technical factors can lead to errors in CRL measurements.

• Limbs in the CRL measurement,

• Excessive curling or extension of the fetus,

• Tangential incorporation of the yolk sac .

CRL

Yolk Sac:• Appears by the 6th or 7th week

as an echogenic sac like structure located close to the embryo within the gestational sac.

• Its diameter increases from 3 mm in the 7th week to 6 mm in the 11th.

Corpus Luteum of Pregnancy:• Can be seen in the early

pregnancy as a smooth bordered hypoechoic cystic mass next to the uterus.

• It usually disappears by the 16th week.

Cervicometry

Funneling & short cervix

Funneling

Nuchal translucency

Abnormal nuchal translucency

FIRST TRIMESTER BLEEDING

3-4 weeks Implantation bleeding Perhaps some fluid in endometrial cavity. Gestational sac not visible at this stage

5-20 weeks Missed abortion Visible embryo. No embryonic activity. Perhaps disorganization of gestational sac and embryo

5-20 weeks Incomplete abortion Some retained products of conception are nonspecific disorganized material

10-20 weeks Early subchorionic hematoma; placental abruption

A fairly common occurrence. Usually echo-poor crescentic fluid collection beside gestational sac. Embryo usually alive

5-20 weeks Other Ectopic pregnancyHydatidiform moleCervical lesions (not usually detected with ultrasound)

Poor Outcome gestational sac criteria

• Abnormal gestational sac size .

• Distorted sac shape .

• Thin weakly echogenic decidual reaction .

• Low position in endometrial cavity .

Unhealthy GS

Unhealthy sac

Is the gestational sac normally located in the endometrial cavity near the fundus?�

Blighted ovum

• A better term for blighted ovum is anembryonic gestation. The very early embryo succumbs for some reason (at 4-5 weeks).

• Where the diagnosis is not certain (the size of the sac is at a borderline size for identification of the embryo), a repeat scan should be performed in approximately one week

Blighted ovum

Missed abortion

Gestational trophoblastic disease (GTD)

• A spectrum of disorders that can develop in subsequent pregnancy.

• Hydatidiform mole is the most common manifestation, representing 85% of cases. Hydatidiform mole is noninvasive and remains confined to the endometrium.

• Choriadenoma destruens is a locally invasive (myometrium) manifestation that represents 13% of cases of GTD.

• Two percent of cases are described as choriocarcinoma, which is locally invasive (myometrium and parametrium). Choriocarcinoma is also highly malignant, spreading hematogenously to the lungs, brain, liver, kidneys, bones, and GI tract

Vesicular mole

• The uterus may appear enlarged and filled with a hyperechoic mass with many cystic structures.

• The cysts measure 1 - 2 mm. and may not be seen sonographically. During the 2nd trimester, the cysts enlarge to approximately 2 cm. in diameter

TVS

Suspected Ectopic gestation

• Specific feature: living embryo in adnexa .• Non specific (correlate with b-HCG) : Empty uterus . Pseudo-gestational sac of ectopic pregnancy . Particulate ascites . Adnexal mass . Ectopic tubal ring .

Empty uterus

Ectopic

Non disrupted ectopic

Ovarian ectopic

Retained products of conception

Subchorionic haematoma

Abdominal pregnancy • In an ectopic pregnancy, the

fertilized egg may implant in:– One of the fallopian tubes.

About 99% of ectopic pregnancies occur in a fallopian tube.2

– One of the ovaries (very rare).

– The cervix (very rare). • The abdomen. This occurs in

just over 1% of ectopic pregnancies.2 Although extremely rare, there are reports of women developing abdominal ectopic pregnancies after having a hysterectomy.5

Rare types

Interstitial pregnancy Hetertropic pregnancy

Twins

• Assessment of viability.• Chorionicity and amnionicity.(DZ)>Dichorionic Diamniotic (MZ)> depend on stage of division:DC/DA MC/DA > most common(70%).MC/MA > incidence of conjoined

twins.

Chorionicity and amnionicity

Delta or lumda sign in DCDA T sign in MCDA

Multiple gestation

• Transvaginal view of an 8 week twin intrauterine pregnancy.

• There is a normal fetal pole in each sac, and each sac has a normal echogenic trophoblastic rim.

2D US

Monoamniotic

Conjoined twins

3D US

Twin Gestation

• Incidence of congenital anomalies appears to be twice as common than in singleton pregnancy.

• Major malformation 2.1% in twins, 1.05% in single fetus.

• Increased rate of anomalies in monozygotic twins .

Multiple pregnancy

From the 2nd trimester on, routine examination should begin with a longitudinal survey scan for general orientation before proceeding to more selective and detailed views.

Symmetrical growth curve

Cranial structures to note

• Head shape.

• Bone density .

• Ventricular system size and appearance.

• Cavum septum pellucidum .

• Thalami

• Cerebellum and vermis

• Cysterna magna

• Nuchal fold .

12 weeks GA

Trans ventricular

Ventriculomegaly

• Measurement is obtained at the level of the glomus of the choroid plexus, perpendicular to the ventricular cavity with the calipers inside the echoes generated by the lateral walls .

• The measurement is stable in the second and early third trimesters, with a mean diameter of 6–8 mm and is considered normal when less than 10 mm .. At mid gestation a value of 10.0 mm or greater should be considered suspicious

15 weeks GA

The depth of the cisterna magna

• measured between the cerebellar vermis and the internal side of the occipital bone is usually 2–10 mm (Mahony, 1988). With dolicocephaly, measurements slightly larger than 10 mm may be encountered

Acrania- Anencephaly- exencephaly• Incidence :1/1000 • Errors of dorsal

induction• Failure of closure of

neural tube at cranial end.

• Absence of brain and vault : frog like appearance

Meckel Gruber syndrome

Exencephaly :

• Amorphus mass resembling brain structures uncovered by bone .

• Facial structures and orbits are present

• Spinal and CNS abnormalities .

• Polyhydramnious

Exencephaly 12 weeks

Exencephaly 20 weeks

Encepalocele • 1in 2000• cranial defect with

varying degrees of brain herniation.

• most cases occurring in the occipital and (less commonly) frontal regions.

• The mass may be purely cystic, or it can contain echoes from brain tissue.

Occipital encephalocele

Holoprosencephaly • Holoprosencephaly is a complex abnormality of the

forebrain resulted from failure in the diverticulation of the prosencephalon. It is classified in three major varieties:

• Alobar: single primitive ventricle; fused thalami; absence of the third ventricle, neurohypophysis, olfatory bulbs and the head is generally small;

• Semilobar: the two cerebral hemispheres are partially separated;

• Lobar: the interhemispheric fissure is well developed posteriorly and anteriorly, but there is still a variable degree of fusion of the cyngulate gyrus and the lateral ventricles and absence of the septum pellucidum.

• Chromosomal abnormality has been associated, specially trisomy 13, but maternal infections and paternal toxic exposures also can be implicated. All kinds of holoprosencephaly can be diagnosed by ultrasound.

Holoprosencephaly

• Associated anomalies: Holo pros encephaly, cephalocele, disgenesis of corpus callosum, cerebellar hypoplasia, atresia of third ven tricle, midline proboscis, hypoplastic tongue, tracheoesophageal fis tula, cardiac anomalies, and adrenal hypoplasia.

F, 24 y, 0000, negative consanguinity, no F, 24 y, 0000, negative consanguinity, no general disease, discovered at 27weeks GAgeneral disease, discovered at 27weeks GA

Fetal brain

Fetal brain 3D

Fetal face

Associated anomalies

F, 28Y, 0000, negative consanguinity ,No general disease ,discovered to have poly

hydraminos at 36 weeks , 2D &4D US

MRI fetal brain

Differential diagnosis

• The most common diagnostic problem is differentiation among :

• Hydranencephaly.

• Schizencephaly .

• Extreme hydrocephalus.

• Alobar holoprosencephaly

• Porencephaly.

• Some spared cortical mantle should still be seen with porencephaly and alobar holoprosencephaly.

Hydrocephalus

Hydrocephalus

Hydranencephaly.

• 1-2.5:10,000 births

• Absence of the cerebral hemispheres with an incomplete or absent falx and a sac-like structure containing cerebral spinal fluid surrounding the brainstem and basal ganglia.

Schizencephaly

• Clefts in the cerebral mantle (usually bilateral), lined by pia-ependyma, with communication between the ventricles and subarachnoid space.

Choroid plexus cyst

• 0.4-3.6% , usually isolated finding .

• Resolve by 22—26 GA.• May be associated with

aneuploidy, trisomy 18&21.

• Size 0.3– 2cm • Unilateral bilateral

solitary or multiple

Arnold chiari

Vermian agenesis

use of three-dimensional (3D) ultrasound

• Evaluation of the fetal face is well established. The advantages over standard 2D ultrasound include the visualization of scanning planes that are physically impossible or very difficult to obtain, the demonstration of the surface of the face, and the possibility of having panoramic views.

• The limitations of the technique are the same as for 2D sonograms. If the fetal face is not accessible or there is not a pocket of amniotic fluid separating the face from the surrounding structures, 3D willbe of little help

3D face US

Cleft lip

Skeleton mode to see palate

Micrognathia

• Referred to as the Robin anomalad, which may be a sporadic isolated finding (in about 40% of cases) or may be associated with other anomalies or with recognized genetic and non-genetic syndromes including Treacher Collins, Robin and Robert syndromes, Cornelia de Lange syndrome, chromosomal abnormalities (mainly trisomy 18 and triploidy) and teratogen exposure

Craniosynostosis • Suspected in the presence of

an abnormal skull shape Failure to visualize the sutures that are normally seen as linear interruptions of the echogenic calvarium increases the index of suspicion.

• Recent reports on 3D ultrasound suggest that this technique may be valuable in the diagnosis of craniosynostosis.

• Fetal yawning and smiling as a marker of fetal neurobehavior or biophysical assessment

Spine

Myelo-meningiocele

Myelo-meningiocele

Female

Female

Male sex

Fetal echocardiography• The five axial views in the normal

cardiac examination.• In the lower image the situs is

determined.• The plane above is the 4-

chamber view (4CV).• More cephalic is the left and right

outflow tract.• The highest plane is the arches

at the 3-vessel and trachea (3VT) view. (From Yagel S, Cohen SM, Achiron R. Obstet Gynecol 2001;368;

Fetal Heart

PKD

PUV

PUJ

Multi cystic dysplastic

Abdomen

Isolated ascites

Abdominal wall abnormalitiesomphalocele

Abdominal wall abnormalitiesGastroschisis

The following are features of body stalk anomaly

• The typical ultrasound features are• major abdominal wall defect.• severe kyphoscoliosis.• neural tube defect.• limb abnormalities.• malformed umbilical cord• Absence of umbilicus and unbilical cord and

adherence of the placenta to the herniated viscera through large anterior wall defect and reduced amniotic fluid render foetus immobile

Body stalk anomaly

SKELETON• Limb buds are first seen by ultrasound

at about the 8th week of gestation; the femur and humerus are seen from 9 weeks, the tibia/fibula and radius/ulna from 10 weeks and the digits of the hands and the feet from 11 weeks.

• Body movements (wiggling) are seen at 9 weeks and, by 11 weeks, limbs move about readily.

• . At the 18–23-week scan, the three segments of each extremity should be visualized, but it is only necessary to measure the length of one femur.

Development of upper& lower extremities

Skeletal abnormalities

• Asymmetry .

• Dysplasias .

• Contractures.

• Fractures.

• Duplications

• reductions

Malformation of fetal skeleton can be classified into two major categories:

Generalized type : multiple bones are involved .

Focal type : a variable pattern both in distribution and extent in involvement.(Bowerman, 1995)

Nonlethal Dwarfism1. Achondroplasia.

2. Asphyxiating thoracic dysplasia (jeune syndrome).

3. Chondroectodermal dysplasia (Ellis-van Creveld syndrome).

4. chondrodysplasia punctata.

5. Spondyloepiphyseal dysplasia.

6. Diastrophic dwarfism.

7. Metatrophic dwarfism.

8. Hypochondroplasia.

Lethal Bone Dysplasia (in order of frequency)

1. Thanatophoric dysplasia

2. Osteogenesis imperfecta, type II.

3. Achondrogenesis type I + II. Jeune syndrome (may be nonlethal).

4. Hypophosphatasia, congenital lethal form.Chondroectodermal dysplasia (usually nonlethal).

5. Chondrodysplasia punctata, rhizomelic type.

6. Camptomelic dysplasia.

7. Short rib polydactylysyndrome

8. Homozygous achondroplasia.

• Routine conventional ultrasound is the main prenatal screening method for skeletal disorders, identifying abnormalities of fetal bones (De Pellegrin et al., 2000).

• Detection of a shortended femur is the most common indication that a skeletal dysplasia may be present

• Examination of all extremities will confirm generalized involvement and help establish a differential diagnosis.

• The cranium and facies are evaluated subjectively for facial dysmorphism. The limbs are evaluated for rhizomelia, mesomelia and acromelia, bowing and mineralization patterns. Hands and feet are evaluated for relative size, posturing and configuration of the phalanges. The axial skeleton is inspected subjectively for mineralization patterns, platyspondyly and rib shape and length (Krakow et al., 2003).

Club foot

Fractures

Asymmetry

Thantophoric dysplasia

Pregnant female 18 weeks GA

3D

4D

Achondogenesis IA

Normal Sonographic Placental Anatomy

• Sonographic pattern of the placenta changes from a series of small white specules at around 8weeks gestation to a granular appearance by 10 weeks gestation.

• In the second trimester it becomes homogenous with a non calcified texture.

• At about 20-24weeks, some echo free spaces within the placental substance develop and enlarge as pregnancy advances.

• After 36 weeks, the spaces becomes more apparent and they are separated by wide calcified areas of inter -cotyledons septa.

Placental grading

Grade I

2

Grade III

2

Grade II

Placental AbnormalitiesPlacental Abnormalities

Abnormal Shape or Implantation

Degenerative Placental Lesions

Circulatory Disturbances

Hypertropic Placental Abnormalities

Placental Inflammation

Tumors of the Placenta

Variant placental shapes

• include bilobed, • succenturiate, • Circumvallate• placenta

membranacea

Placental localization.

• US has become indispensable in the localization of the site of the placenta and determining its lower edges, thus making a diagnosis or an exclusion of placenta previa.

• Other placental abnormalities in conditions such as diabetes, fetal hydrops, Rh isoimmunization and severe intrauterine growth retardation can also be assessed.

What is the position of the placenta?

• At about 7 8 weeks the chorion frondosum begins to thicken and form a recognizable placenta. It covers a large area in the uterus at this stage. For this reason it is best to not try to diagnose placenta previa before10 12 weeks.

Placenta accreta There are multiple variants, defined by the depth of

their attachment to uterine wall:• Placenta accreta (75%) :An invasion of the

myometrium which does not penetrate the entire thickness of the muscle.

• Placenta increta (17%) : Occurs when the placenta further extends into the myometrium, penetrating the muscle.

• Placenta percreta 5-7%: The worst form , the placenta penetrates the entire myometrium to the uterine serosa (invades through entire uterine wall). This variant can lead to the placenta attaching to other organs such as the rectum or bladder[David Miller ,2004].

Placenta accreta Risk factors

• The condition affects around 10% of cases of placenta praevia.

• Increased in incidence by the presence of scar tissue i.e. Asherman's syndrome usually from past uterine surgery, especially from a past Dilation and curettage,[3] (which is used for many indications including miscarriage, termination, and postpartum hemorrhaging), myomectomy,[4] or caesarean section.

• A thin decidua can also be a contributing factor to such trophoblastic invasion. Some studies suggest that the rate of incidence is higher when the fetus is female.[5]

PA is a clinical and diagnostic challenge

• Ultrasonography (US) remains the diagnostic standard, and routine US examination at 18–20 weeks gestation affords an ideal opportunity to screen for the disorder. Placental lacunae and abnormal color Doppler imaging patterns are the most helpful US markers for PA

Normal placental interface• a) Transverse

transabdominal US image shows the hyperechoic placenta (*) surrounded by the hypoechoic myometrium (arrowheads).

• (b) Sagittal transabdominal US image shows a thin, hypoechoic line (arrowheads) at the inner aspect of the myometrium representing a subplacental clear space.

• (c) Sagittal transabdominal US image shows a normal organized pattern of subplacental blood flow that parallels the myometrium.

US Findings in PA• Placenta previa• Placental lacunae with turbulent flow• Irregular bladder wall with extensive

associated• vascularity• Loss of retroplacental clear space• Myometrial thickness <1 mm or loss of

visualization• of the myometrium• Gap in the retroplacental blood flow

Placental lacunae. (a) Transverse transvaginal US image shows multiple tortuous hypoechoic structures within the placenta. (b) Transverse transabdominal Doppler US image helps confirm that the hypoechoic spaces are vascular and therefore represent placental lacunae.

Accreta

Colour DopplerSagittal transabdominal US image shows a gap in the myometrial blood flow in the loweruterine segment.

previavasa

Placenta Previa

Abruption

Subchorionic haematoma

Amniotic fluid index– The volume of the amniotic fluid is

evaluated by visually dividing the mother's abdomen into 4 quadrants. The largest vertical pocket of fluid is measured in centimeters. The total volume is calculated by multiplying this value by 4.

– Polyhydramnios is usually defined as an amniotic fluid index (AFI) more than 24 cm or a single pocket of fluid at least 8 cm in deep that results in more than 2000 mL of fluid.

– Oligohydramnios is sonographically defined as an AFI less than 7 cm or the absence of a fluid pocket 2-3 cm in depth

Hydramnios and Oligohydramnios

• Excessive or decreased amount of liquor (amniotic fluid) can be clearly depicted by ultrasound. Both of these conditions can have adverse effects on the fetus.

• In both these situations, careful ultrasound examination should be made to exclude intraulterine growth retardation and congenital malformation in the fetus such as intestinal atresia, hydrops fetalis or renal dysplasia

Polyhydramnious

Anhydramnios

Turbid liqour

Bowel

• The normal colon is visible in late pregnancy.

• Haustrations within the colon can be seen from about 30 weeks, and peristalsis can be frequently observed.

• Large bowel obstruction should be suspected if its internal diameter measures 20 mm or more

Lung maturity

Hypolpastic lung

Diagnosis of fetal malformation • Many structural abnormalities in the fetus can be reliably

diagnosed by an ultrasound scan, and these can usually be made before 20 weeks. Common examples include hydrocephalus, anencephaly, myelomeningocoele, achondroplasia and other dwarfism, spina bifida, exomphalos, Gastroschisis, duodenal atresia and fetal hydrops.

• With more recent equipment, conditions such as cleft lips/ palate and congenital cardiac abnormalities are more readily diagnosed and at an earlier gestational age.

• First trimester ultrasonic 'soft' markers for chromosomal abnormalities such as the absence of fetal nasal bone, an increased fetal nuchal translucency (the area at the back of the neck) are now in common use to enable detection of Down syndrome fetuses

Causes of hydrops fetalis • Immune :RH factors • Non immune :• Cardiovascular • Pulmonary :diaphragmatic

hernia ,CAM ,chylothorax , pulmonary sequestration .

• Chromosomal :trisomy21 ,turner syndrome , triploidy .

• Hematologic : thalassemia • Infections :Torch • Neoplastic : neuroblastoma teratoma and

congenital leukemia

• Liver :hepatic fibrosis , haemangio-endothelioma , hepatic vascular

• Metabolic : Gaucher , gangliosidosis ,hurler syndrome ,mucolipidosis .

• Skeletal

• Muscular ;e.g arthrogryposis multiplex

• Syndomes

• Materal :severe anemia , hypoproteinemia

Fetal hydrops

ANTEPARTUM FETAL MONITORING

• Biophysical profile (BPP)– Described by Manning (1980)– The number of biophysical activities that could

be recorded increased with real time ultrasound:

• Fetal movement (FM)• Fetal tone (FT)• Fetal breathing movements (FB)• Amniotic fluid volume (AFV)

ANTEPARTUM FETAL MONITORING

• Biophysical profile (BPP) – variables– NST: reactive – as described earlier.– FBM: present - at least 1 episode of at least 30

seconds duration (within a 30 minute period).– FM: present - at least 3 discrete episodes.– FT: normal - at least 1 episode of extension of

extremities or spine with return to flexion.– AFV: normal – largest pocket of fluid greater than 1

cm in vertical diameter.

ANTEPARTUM FETAL MONITORING

• Biophysical profile (BPP)– Each variable

• When normal: 2• When abnormal: 0

– Highest Score: 10, Lowest Score: 0– Accuracy improved by increasing the number

of variables assessed.– Overall false negative rate: 0.6/1000

NON-STRESS TEST

• REACTIVE Repeat test weekly

• EQUIVOCAL :Stimulate movements with motion, sound, or glucose drink

• SUSPICIOUS Repeat : test within 24 hours

• NON-REACTIVE : Consider other tests of fetal wellbeing and consider

gestation re delivery

BiophysicalVariable

Normal(Score = 2)

Abnormal(Score = 0)

Fetal breathing movements 1 or more episodes of >20 s within 30 min

Absent or no episode of >20 s within 30 min

Gross body movements 2 or more discrete body/ limb movements within 30 min (episodes of active continuous movement considered as a single movement)

<2 episodes of body/limb movements within 30 min

Fetal tone 1 or more episodes of active extension with return to flexion of fetal limb(s) or trunk (opening and closing of hand considered normal tone)

Slow extension with return to partial flexion, movement of limb in full extension, absent fetal movement, or partially open fetal hand

Reactive FHR 2 or more episodes of acceleration of >15 bmp* and of >15 s associated with fetal movement within 20 min

1 or more episodes of acceleration of fetal heart rate or acceleration of <15 bmp within 20 min

Qualitative AFV 1 or more pockets of fluid measuring >2 cm in vertical axis

Either no pockets or largest pocket <2 cm in vertical axis

Fetal Doppler

Fetal arterial DopplerUmbilical arterial circulation

• The umbilical arterial circulation is normally a low impedance circulation   , with an increase in the amount of end diastolic flow with advancing gestation .

•   Umbilical arterial Doppler waveforms reflect the status of the placental circulation, and the increase in end diastolic flow that is seen with advancing gestation is a direct result of an increase in the number of tertiary stem villi that takes place with placental maturation. 

• Diseases that obliterate small muscular arteries in placental tertiary stem villi result in a progressive decrease in end-diastolic flow in the umbilical arterial Doppler waveforms until absent, and then reverse flow during diastole is noted

Normal umbilical cord:

in long axis, the cord may be seen as a series of parallel lines

in long axis, the cord may be seen as a series of parallel lines

short axis the arteries and umbilical vein may be seen as three separately circular lucencies

short axis the arteries and umbilical vein may be seen as three separately circular lucencies

Color Doppler image will demonstrate one color in vein and another in the arteries

Color Doppler image will demonstrate one color in vein and another in the arteries

Umbilical Cord Umbilical Cord AbnormalitiesAbnormalities

Single umbilical artery( SUA): Absence Single umbilical artery( SUA): Absence of an umbilical artery is believed to be of an umbilical artery is believed to be present in 1% of all live births. This condition present in 1% of all live births. This condition is frequently referred to as a two vessel cord.is frequently referred to as a two vessel cord.

Origins include:Origins include:

Primary agenesis of one of the arteriesPrimary agenesis of one of the arteries

Secondary atrophy of a previously present Secondary atrophy of a previously present arteryartery

Persistence of the original, single embryonic Persistence of the original, single embryonic arteryartery

SUASUA Is associated with other fetal anomalies 25 -50% of the Is associated with other fetal anomalies 25 -50% of the

time. For this reason,prenatal discovery of an absent time. For this reason,prenatal discovery of an absent umbilical artery should prompt a thorough survey of umbilical artery should prompt a thorough survey of the fetal anatomy. the fetal anatomy.

Commonly associated abnormalities include:Commonly associated abnormalities include:

Trisomies 13 and 18Trisomies 13 and 18

GU anomaliesGU anomalies

CNS anomaliesCNS anomalies

Cardiac anomaliesCardiac anomalies

OmphaloceleOmphalocele

SirenomeliaSirenomelia

VATER anomalies (VATER anomalies (Vertebral, Anal atresia, Tracheo-Vertebral, Anal atresia, Tracheo-esophageal esophageal fistula, fistula, Esophageal atresia, Radial Esophageal atresia, Radial aplasia, Renal anomalies)aplasia, Renal anomalies)

Sonographic findingsSonographic findings Absence of an umbilical Absence of an umbilical

arteryartery

Two vessel cordTwo vessel cord

Care should be taken to Care should be taken to obtain a true transverse obtain a true transverse section through thesection through the

cord.cord.

When present, a When present, a thorough examination of thorough examination of fetal anatomy should befetal anatomy should be

performed.performed.

Umbilical cord cystsUmbilical cord cysts Omphalo-mesenteric duct cyst: A Omphalo-mesenteric duct cyst: A

cystic lesion of the umbilical cord cystic lesion of the umbilical cord due due to the persistence and dilatation of to the persistence and dilatation of the embryonic omphalo-mesenteric duct. the embryonic omphalo-mesenteric duct. The cysts are generally located close to The cysts are generally located close to the fetus and vary greatly in size.the fetus and vary greatly in size.

Allantoic cyst: Cystic dilatation of Allantoic cyst: Cystic dilatation of the primitive embryonic the primitive embryonic allantois.allantois.Usually small and located Usually small and located within the cord within the cord away from the fetal away from the fetal abdomen.abdomen.

Umbilical cord cystUmbilical cord cyst

Sonographic findings:Sonographic findings:

Demonstration of an Demonstration of an umbilical cord cystumbilical cord cyst

Absence of blood flow Absence of blood flow demonstrated by demonstrated by DopplerDoppler

Differentiation Differentiation between the two types between the two types is not usually possible is not usually possible and is ofand is of

no clinical significanceno clinical significance

Cord loop around neckCord loop around neck

Uterine arteryUterine artery

1st trimest

er Early 2nd trimester

Late 2nd & 3rd trimester

Uterine artery at 24 Uterine artery at 24 weeksweeks

NormalNormal AbnormalAbnormal

Umbilical artery

• Doppler waveforms of the umbilical arteries can be obtained from any segment along the umbilical cord. 

• Waveforms obtained from the placental end of the cord show more end diastolic flow than waveforms obtained from the abdominal cord insertion

IUGR

Fetal MCA

MCA

MCA

IUGR

Oligohydramnious

UA& MCA Doppler

Fibroid with pregnancy

Ov mass with pregnancy

The lower uterine segment

• Uterine dehiscence and rupture

• Pitfalls in assessing cervical length and funneling

• Placental imaging in the lower uterine segment : Placenta previa : Placenta accreta, increta, and percreta

• Leiomyomas in the lower uterine segment Ectopic pregnancy in the uterine scar

Uterine scar

Caesarian scar complications

Cervical leimyoma

Conditions Causing Acute Abdomen During Pregnancy

top related