production of bioethanol from sugarcane in indonesia

Post on 31-Dec-2015

57 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

DESCRIPTION

Production Bioethanol in Indonesia using Distilation Column for producing Sugarcane as an homework in Hochschule Bremerhaven in second semester.

TRANSCRIPT

Production of Bioethanol from Production of Bioethanol from

Sugarcane in Indonesia

Angga Ariamanggala Ginandjar 28344

Iria Regueiro Carrera 26657

Rifki Andika Habibi 28345

Sildarista Fukohani 27456

Sin Pauliana Agustin 28268

Contents

• Introduction

• Objectives• Objectives

• Bioethanol Process

• Bioethanol in Indonesia

• Ethanol production process from sugarcane

Conclusions• Conclusions

• References

Introduction

• 21% contribution to the green houses gases is from • 21% contribution to the green houses gases is from

transport sector

• European comission set the target of 5.75% in the

transportation sector by 2010

Objective

Production of 15000 l/d bioethanol from

sugarcanesugarcane

Biofuels

• help to reduce fossil fuel strong dependence

• decreasing air pollution• decreasing air pollution

• promoting rural development

• enhancing local economy

• bioethanol is one of the principle emerging alternative fuels used as a petrol substitute for road transport vehicles

• the low degree of technical changes to be performed in • the low degree of technical changes to be performed in the vehicle engine�the only technical option available in the market to reduce significantly CO2 emissions from fossil fuels in transportation on a short-term basis

Bioethanol Production Processes

Indonesian Goverment Target in

Biofuels

25

Indonesian Target

9.84

22.26

10

15

20

million kiloliters

5.29

0

5

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

Bioethanol in Indonesia

Ethanol production in Indonesia was about 0.14 million

kiloliters in 2007 and the economy plan to reach 3.77 million

kiloliters in 2010

Bioethanol based on its raw material

Sources Harvesting Ethanol yieldsSources Harvesting

yields

Ethanol yields

tons/ha.year l/ton l/ha.year

Sugarcane 75 67 5025

Cassava 25 180 4500

Yam 62.5 125 7812

Sustainable supply of raw materials

• Sugarcane harvest is in 8-10 months

• Providing 3 main areas for farming, the time • Providing 3 main areas for farming, the time

planting distance between first and second

area is 4 months and the same with the

second and third area will result sustainable

supply of sugarcane whole yearsupply of sugarcane whole year

• In order to secure the supply of sugarcane,

one additional area can be implemented

Sugarcane demand and farming area

requirements

The mass balance for processing one ton of

sugarcane is either:sugarcane is either:

• 1 t sugarcane = 107 kg sugar + 12 l ethanol, or

• 1 t sugarcane = 80 l ethanol

• Production of 15000 l/d bioethanol�187.5 • Production of 15000 l/d bioethanol�187.5

ton/d of sugarcane

• 912.5 ha. of farming area

Bagasse

• Fibrous residue remaining after sugarcane or sorghum • Fibrous residue remaining after sugarcane or sorghum

stalks are crushed to extract their juice

• For each 10 tons of sugarcane crushed, a sugar factory

produces nearly 3 tones of wet bagasse

• Bagasse from sugarcane contains almost 50% of

cellulose. cellulose.

• Cellulose itself has calorific value almost similar as wood

which approximately 16000 kJ/kg.

• Bagasse prospectively can be used in the plant as a fuel

in the combustion chamber to produce heat or power

Mapping the Farming Area in Indonesia

• 110 M ha and 8.5 M ha fallow farmland

• fallow farmland is available for development of crop cultivation

• some islands, e.g. Sumatera and Java, the areas for farming are in huge amount

(shown in pink color)

Ethanol Production from Sugarcane

Process flow diagram

Bioethanol purification process flow

diagram

Hand calculation

Assumption:

• feed temperature enter the rectification • feed temperature enter the rectification

column is 47.03 degree

• Feed: 18,19% ethanol mass fraction

• Bottom product: 11,68%-mass fraction

ethanolethanol

Ponchon-Savarit Diagram

Number of theoretical stages: ?

Mass flow of feed and waste

• Mass flow of feed

• Mass flow of waste

Heat flow in condenser and evaporator

• Heat of reflux

• Heat of product

• Heat flow in condenser

• Heat flow in evaporator

Bagasse combustion: Grate Firing

• Suitable for different particle size

• Suitable for fuel with high water content

• It has heating ranges (fuels) of: 5 MJ/kg - 20 MJ/kg (biomass

included in it)

HHV and LHV

C 0,269 26,9 %

H 0,0357 3,57 %• Higher Heating Value (HHV) or Gross Calorific Value

(GCV) in BTU/LbH 0,0357 3,57 %

O 0,234 23,4 %

N 0,0011 0,11 %

S 0,00055 0,055 %

Ash 0,00825 0,825 %

Moisture 0,45 45 %

(GCV) in BTU/Lb

• Lower Heating Value (LHV) or Lower Calorific Value

(LCV) or Net Calorific Value (NCV) in BTU/lb

HHV 4329.528 BTU/lb 10070.5 kJ/kg

LHV 3535.089 BTU/lb 8222.631 kJ/kg

Loss consideration

Unburnt fuel loss

• Depends up on type of Boiler grate, grate loading and type of fuel

• For biomass fuels, it ranges from 1.5 to 3 %,• For biomass fuels, it ranges from 1.5 to 3 %,

• Assumption of the loss burn fuel is 2%

• Loss unburnt fuel = HHV x 2% = 201.41 kJ/kg

Radiation loss

• Hot boiler casing loosing heat to ambient

• Assume of the radiation Loss , Lf = 0.4 % in this case• Assume of the radiation Loss , Lf = 0.4 % in this case

• Radiation loss (4%) = HHV x 0.4% = 40.282 kJ/kg

• Final HHV = HHV – Unburnt fuel loss – Radiation Loss = 9828.808 kJ/kg

• Energy of steam = 1693.07 kW

Mass of Steam needed

• Temperature Steam = 150.05 oC

• Pressure = 4 bar

• Enthalpy = 2753 kJ/kg (from steam table)

• Temperature Water inlet = 60 oC

• Enthalpy = 251 kJ/kg (from steam table)

• Saturated Water enthalpy = 1235,11 kJ/kg (from

steam table)

Blowdown consideration

Usually 1 – 3% of the water flow is used for

blowdown. blowdown.

• Assumption of 2% is used

• Heat in blowdown water = 3,35 kW

• Mass of bagasse

• Bagasse production/day � 56.25 ton >> 15

ton (demand of bagasse fulfilled!)

Project map and distribution system

Bioethanol purification using the

steam injection system

Stream conditions of steam injection

system

Fermentation Steam 1 Stillage 2 Waste 4 Product 5 6

Vapour fraction 0,00 1,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Temperature (K) 323,15 423,15 358,86 371,77 371,77 359,24 336,70 353,69 374,68 374,68

Pressure (bar) 1,50 4,00 1,20 1,30 1,30 1,30 1,50 1,10 1,20 1,20

Molar Flow

(kgmole/h)303,00 52,54 17,06 342,00 340,51 340,51 303,00 13,55 3,50 3,51

mass flow (kg/h) 6.138,62 946,59 588,83 6.560,81 6.532,07 6.532,07 6.138,62 524,46 64,37 64,43

Liquid Volume

Flow (L/d)1,54E+05 2,28E+04 1,70E+04 1,62E+05 1,61E+05 1,61E+05 1,54E+05 1,54E+04 1,56E+03 1,56E+03

Heat Flow (kJ/h) -8,55E+07 -1,25E+07 -3,99E+06 -9,53E+07 -9,49E+07 -9,53E+07 -8,52E+07 -3,69E+06 -9,78E+05 -9,78E+05

Comp Mole

fraction (Ethanol)0,08 0,00 0,59 0,04 0,04 0,04 0,08 0,74 0,01 0,01

Comp Mole0,92 1,00 0,41 0,96 0,96 0,96 0,92 0,26 0,99 0,99

Comp Mole

fraction (H2O)0,92 1,00 0,41 0,96 0,96 0,96 0,92 0,26 0,99 0,99

Q-100 Q-101 Q-102 Q-103

Heat Flow (kW) 192,75 0,00 107,32 294,97

Bioethanol purification using the

reboiler system

Stream conditions of reboiler system

Fermentation 1 Stillage 2 Waste 4 Product 5 6 Steam 7

Vapour fraction 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00

Temperature (K) 303,15 358,62 370,84 370,77 352,37 320,18 353,69 374,75 374,75 423,15 416,78

Pressure (bar) 1,50 1,20 1,30 1,30 1,30 1,50 1,10 1,20 1,20 4,00 4,00

Molar Flow

(kgmole/h)303,00 17,06 289,26 288,70 288,70 303,00 13,75 3,30 3,31 67,27 67,27

mass flow (kg/h) 6138,62 592,92 5606,54 5600,25 5600,25 6138,62 532,24 60,67 60,83 1211,79 1211,79

Liquid Volume

Flow (L/d)6,43 0,71 5,78 5,78 5,78 6,43 0,65 0,06 0,06 1,21 1,21

Heat Flow (kJ/h) -8,60E+07 -3,99E+06 -8,06E+07 -8,05E+07 -8,09E+07 -8,56E+07 -3,75E+06 -9,22E+05 -9,24E+05 -1,60E+07 -1,86E+07

Comp Mole

fraction Ethanol)8,00E-02 5,97E-01 4,87E-02 4,93E-02 4,93E-02 8,00E-02 7,37E-01 1,22E-02 1,23E-02 0,00E+00 0,00E+00

Comp MoleComp Mole

fraction (H2O)0,92 0,40 0,95 0,95 0,95 0,92 0,26 0,99 0,99 1,00 1,00

Q-100 Q-101 Q-102 Q-103

Heat Flow (kW) 192,29 722,93 111,79 299,35

Steam injection vs Reboiler

• Steam injection system is more efficient in costing, because only use 1 reboiler, for the costing, because only use 1 reboiler, for the second column

• Steam injection system more efficient in maintenance cost, because maintain only 1 reboiler.

• Steam injection system is more efficient in utility, • Steam injection system is more efficient in utility, from data, the needed steam for steam injection is around 22718 ton/day and for reboiler system is 24674 ton/day.

Conclusions

Hand Calculation Hysys

Mass Flow Feed 6048.14 kg/h 6138.62 kg/h

Mass Flow Waste 5548.08 kg/h 5600.25 kg/h

• Mass Flow Sugarcane : 187.5 ton/d

• Baggase Production : 56.25 ton/d

• Baggase Usage : 15 ton/d

• Baggase Usage for Boiler : 7.03 ton/d

Mass Flow Waste 5548.08 kg/h 5600.25 kg/h

Heat of Reboiler 793.68 kW 834.72 kW

• Baggase Usage for Boiler : 7.03 ton/d

• Environmental friendly � Bagasse usage to cover steam consumption in distillation system

Thank you for your attention

top related