precision calculations for bsm physics at the lhcbsm searches at the lhc many model for new physics...

Post on 08-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MPIK Heidelberg, April 2009

Precision calculations for BSM physics at the LHC

Michael Kramer (RWTH Aachen)

Sponsored by:

SFB/TR 9 “Computational Particle Physics”, Helmholtz Alliance “Physics at the Terascale”, BMBF-Theorie-

Verbund, Marie Curie Research Training Network “Heptools”, Graduiertenkolleg “Elementarteilchenphysik

an der TeV-Skala”

page 1

Why precision calculations for LHC physics?

We do not need theory input for LHC discoveries

8000

6000

4000

2000

080 100 120 140

mγγ (GeV)

Higgs signal

Eve

nts

/ 500

MeV

for

105

pb-

1

HSM γγ

Simulated 2γ mass plotfor 105 pb-1 mH =130 GeV

in the lead tungstate calorimeter

D_D

_105

5c

CMS, 105 pb-1

but only if we see a resonance. . .

page 2

Why precision calculations for LHC physics?

We do not need theory input for LHC discoveries

8000

6000

4000

2000

080 100 120 140

mγγ (GeV)

Higgs signal

Eve

nts

/ 500

MeV

for

105

pb-

1

HSM γγ

Simulated 2γ mass plotfor 105 pb-1 mH =130 GeV

in the lead tungstate calorimeter

D_D

_105

5c

CMS, 105 pb-1

but only if we see a resonance. . .

page 2

Contents

Why precision calculations for LHC physics?

– lessons from the past

– prospects: SUSY searches at the LHC

page 3

Contents

Why precision calculations for LHC physics?

– lessons from the past

– prospects: SUSY searches at the LHC

page 4

Why precision calculations for LHC physics?

Tevatron jet cross section at large ET

Et (GeV)-0.5

0

0.5

1

(Dat

a - T

heor

y)/ T

heor

y

200 300 40010050

CTEQ3MCDF (Preliminary) * 1.03D0 (Preliminary) * 1.01

page 5

Why precision calculations for LHC physics?

Tevatron jet cross section at large ET

Et (GeV)-0.5

0

0.5

1

(Dat

a - T

heor

y)/ T

heor

y

200 300 40010050

CTEQ3MCDF (Preliminary) * 1.03D0 (Preliminary) * 1.01

⇒ new physics? + ?

page 6

Why precision calculations for LHC physics?

Tevatron jet cross section at large ET

Et (GeV)-0.5

0

0.5

1

(Dat

a - T

heor

y)/ T

heor

y

200 300 40010050

CTEQ3MCDF (Preliminary) * 1.03D0 (Preliminary) * 1.01

LBSM ⊇g2

M2ψγµψ ψγµψ ⇒

data − theory

theory∝ g2 E

2T

M2

page 7

Why precision calculations for LHC physics?

Tevatron jet cross section at large ET

(GeV)TInclusive Jet E0 100 200 300 400 500 600

(nb/

GeV

d T /

dEσ2

d

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-11

10

102

CDF Run II PreliminaryIntegrated L = 85 pb-1

0.1 < |ηDet| < 0.7JetClu Cone R = 0.7

Run II DataCTEQ 6.1 Uncertainty+/- 5% Energy Scale Uncertainty

⇒ just QCD. . . (uncertainty in gluon pdf at large x)

page 8

Why precision calculations for LHC physics?

Tevatron bottom quark cross section

[D0, PLB 487 (2000)]

⇒ new physics?

page 9

Why precision calculations for LHC physics?

Tevatron bottom quark cross section

[Berger et al., PRL 86 (2001)]

10-1

1

10

10 2

10 3

10 4

10 5

10 102

SumQCDg → b~

D0 Data

CDF Data

√S = 1.8 TeV

mg = 14 GeV

mb = 3.5 GeV

mb = 4.75 GeV

~

~

pT (GeV)min

σ b(p T

≥ p

T )

(nb

)m

in

⇒ light gluino/sbottom production?

page 10

Why precision calculations for LHC physics?

Tevatron bottom quark cross section

[Mangano, AIP Conf.Proc, 2005]

⇒ just QCD. . . (αs, low-x gluon pdf, b→ B fragmentation & exp. analyses)

page 11

Why precision calculations for LHC physics?

Signals of discovery include

– mass peaks

– anomalous shapes of kinematic distributions

e.g. jet production at large ET

– excess of events after kinematic selection

e.g. bottom cross section

page 12

Why precision calculations for LHC physics?

Signals of discovery include

– mass peaks

– anomalous shapes of kinematic distributionse.g. jet production at large ET

– excess of events after kinematic selectione.g. bottom cross section

page 12

Why precision calculations for LHC physics?

Signals of discovery include

– mass peakse.g. Higgs searches in H → γγ/ZZ∗ final states

– anomalous shapes of kinematic distributionse.g. SUSY searches in multijet + ET,miss final states

– excess of events after kinematic selectione.g. Higgs searches in H → WW ∗ final states

Experiments measure multi-parton final states in restricted phase space region

→ Need flexible and realistic precision calculations

precise → including loops & many legs

flexible → allowing for exclusive cross sections & phase space cuts

realistic → matched with parton showers and hadronization

page 13

Why precision calculations for LHC physics?

Signals of discovery include

– mass peakse.g. Higgs searches in H → γγ/ZZ∗ final states

– anomalous shapes of kinematic distributionse.g. SUSY searches in multijet + ET,miss final states

– excess of events after kinematic selectione.g. Higgs searches in H → WW ∗ final states

Experiments measure multi-parton final states in restricted phase space region

→ Need flexible and realistic precision calculations

precise → including loops & many legs

flexible → allowing for exclusive cross sections & phase space cuts

realistic → matched with parton showers and hadronization

page 13

Contents

Why precision calculations for LHC physics?

– lessons from the past

– prospects: SUSY searches at the LHC

page 14

BSM searches at the LHC

Many model for new physics are addressing two problems:

– the hierarchy/naturalness problem

– the origin of dark matter

→ spectrum of new particles at the TeV-scale with weakly interacting & stable particle

→ generic BSM signature at the LHC involves cascade decays with missing energy,

eg. supersymmetry

D_D

_204

7.c.

1

q

q

q

q

q~

~

~

~

—b

b

l+

l+

g

~g

W— W+t

t

t1

ν

χ1

~χ10

~χ20

Gluino/squark production event topology al lowing sparticle mass reconstruction

3 isolated leptons+ 2 b-jets+ 4 jets

+ Etmiss

~l

+

l-

Such cascade decays allow to reconstructsleptons, neutralinos, squarks, gluinos...in favorable cases with %level mass resolutions

page 15

BSM searches at the LHC

Many model for new physics are addressing two problems:

– the hierarchy/naturalness problem

– the origin of dark matter

→ spectrum of new particles at the TeV-scale with weakly interacting & stable particle

→ generic BSM signature at the LHC involves cascade decays with missing energy,

eg. supersymmetry

D_D

_204

7.c.

1

q

q

q

q

q~

~

~

~

—b

b

l+

l+

g

~g

W— W+t

t

t1

ν

χ1

~χ10

~χ20

Gluino/squark production event topology al lowing sparticle mass reconstruction

3 isolated leptons+ 2 b-jets+ 4 jets

+ Etmiss

~l

+

l-

Such cascade decays allow to reconstructsleptons, neutralinos, squarks, gluinos...in favorable cases with %level mass resolutions

page 15

BSM searches at the LHC

• simple discriminant for SUSY

searches: effective mass

Meff = ET,miss +∑4

i=1 pjetT

• excess of events with large Meff

→ initial discovery of SUSY

LHC Point 5

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1000 2000 3000 4000Meff (GeV)

dσ/d

Mef

f (m

b/40

0 G

eV)

page 16

BSM searches at the LHC

• simple discriminant for SUSY

searches: effective mass

Meff = ET,miss +∑4

i=1 pjetT

• excess of events with large Meff

→ initial discovery of SUSY

Modern LO Monte Carlo tools predict much larger multi-jet background

What will disagreement between Monte Carlo and data mean?

→ Need precision NLO calculations to tell!

page 17

BSM searches at the LHC

• simple discriminant for SUSY

searches: effective mass

Meff = ET,miss +∑4

i=1 pjetT

• excess of events with large Meff

→ initial discovery of SUSY

Modern LO Monte Carlo tools predict much larger multi-jet background

What will disagreement between Monte Carlo and data mean?

→ Need precision NLO calculations to tell!

page 17

Precision calculations for BSM physics at the LHC

no excess over SM expectations

→ exclude models / set limits on model parameters

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

exploring BSM models (later LHC phase)

→ determine masses & spins

page 18

Precision calculations for BSM physics at the LHC

no excess over SM expectations

→ exclude models / set limits on model parameters

)2 (GeV/cg~

M0 100 200 300 400 500 600

)2 (G

eV/c

q~M

0

100

200

300

400

500

600CDF Run II Preliminary -1L=2.0 fb

no mSUGRAsolution

LEP 1 + 2

UA

1

UA

2

FNAL Run I

g~

= Mq~M

)2 (GeV/cg~

M0 100 200 300 400 500 600

)2 (G

eV/c

q~M

0

100

200

300

400

500

600observed limit 95% C.L.expected limit

<0µ=5, β=0, tan0A

Theoretical uncertainties includedin the calculation of the limit

→ needs accurate theoretical predictions

page 19

SUSY particle production at hadron colliders

SUSY particles would be producedcopiously at hadron colliders viaQCD processes, eg.

g

g

SUSY signal LHC −→

σ(qq + gg + gq) ≈ 2 nb (Mq,g ≈ 300 GeV)

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σttbar

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σbbar

σtot

σ (n

b)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

page 20

SUSY particle production at hadron colliders

SUSY particles would be producedcopiously at hadron colliders viaQCD processes, eg.

g

g

SUSY signal LHC −→

σ(qq + gg + gq) ≈ 2 nb (Mq,g ≈ 300 GeV)

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σttbar

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σbbar

σtot

σ (n

b)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

page 20

SUSY particle production at hadron colliders

SUSY particles would be producedcopiously at hadron colliders viaQCD processes, eg.

g

g

SUSY signal Tevatron −→

σ(qq + gg + gq) ≈ 2 nb (Mq,g ≈ 300 GeV)

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σttbar

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σbbar

σtot

σ (n

b)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

page 21

SUSY particle production at hadron colliders

MSSM sparticle pair production at NLO (Beenakker, Hopker, MK, Plehn, Spira, Zerwas)

− squarks & gluinos pp/pp→ q¯q, gg, qg

− stops pp/pp→ tt

− gauginos pp/pp→ χ0χ0, χ±χ0, χ+χ−

− sleptons pp/pp→ ll

− associated production pp/pp→ qχ, gχ

References of LO calculations:

Kane, Leveille, ’82; Harrison, Llewellyn Smith, ’83; Reya, Roy, ’85; Dawson, Eichten, Quigg, ’85; Baer, Tata, ’85,. . .

page 22

SUSY particle production at hadron colliders

MSSM sparticle pair production at NLO (Beenakker, Hopker, MK, Plehn, Spira, Zerwas)

− squarks & gluinos pp/pp→ q¯q, gg, qg

− stops pp/pp→ tt

− gauginos pp/pp→ χ0χ0, χ±χ0, χ+χ−

− sleptons pp/pp→ ll

− associated production pp/pp→ qχ, gχ

References of LO calculations:

Kane, Leveille, ’82; Harrison, Llewellyn Smith, ’83; Reya, Roy, ’85; Dawson, Eichten, Quigg, ’85; Baer, Tata, ’85,. . .

page 23

Example: Top-squark production

LO graphs

q

q

g

t1

¯t1

g

g

σLO[gg] =α2

s

(5

48+

31m2

24s

)+

(2m2

3s+

m4

6s2

)log

1 − β

1 + β

](β2=1−4m2/s)

⇒ no MSSM parameter dependence

pp cross section: σ = Fnon−pert.(µ) ⊗(C0α

Bs (µ) + C1(µ)αB+1

s (µ) + . . .)pert.

Scale dependence through factorization of IR contributions and renormalization of UV contributions

LO scale dependence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

LO

NLO

LO

σ(pp– → t1t

−1+X) [pb]

LO

σ(pp → t1t−1+X) [pb]

µ/m(t1)

µ/m(t1)

√s=2 TeV; m(t1) = 200 GeV

→ theoretical uncertainty ≈ ±100% at LO

⇒ must include NLO corrections

page 24

Example: Top-squark production

LO graphs

q

q

g

t1

¯t1

g

g

σLO[gg] =α2

s

(5

48+

31m2

24s

)+

(2m2

3s+

m4

6s2

)log

1 − β

1 + β

](β2=1−4m2/s)

⇒ no MSSM parameter dependence

pp cross section: σ = Fnon−pert.(µ) ⊗(C0α

Bs (µ) + C1(µ)αB+1

s (µ) + . . .)pert.

Scale dependence through factorization of IR contributions and renormalization of UV contributions

LO scale dependence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

LO

NLO

LO

σ(pp– → t1t

−1+X) [pb]

LO

σ(pp → t1t−1+X) [pb]

µ/m(t1)

µ/m(t1)

√s=2 TeV; m(t1) = 200 GeV

→ theoretical uncertainty ≈ ±100% at LO

⇒ must include NLO corrections

page 24

Example: Top-squark production

LO graphs

q

q

g

t1

¯t1

g

g

σLO[gg] =α2

s

(5

48+

31m2

24s

)+

(2m2

3s+

m4

6s2

)log

1 − β

1 + β

](β2=1−4m2/s)

⇒ no MSSM parameter dependence

pp cross section: σ = Fnon−pert.(µ) ⊗(C0α

Bs (µ) + C1(µ)αB+1

s (µ) + . . .)pert.

Scale dependence through factorization of IR contributions and renormalization of UV contributions

LO scale dependence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

LO

NLO

LO

σ(pp– → t1t

−1+X) [pb]

LO

σ(pp → t1t−1+X) [pb]

µ/m(t1)

µ/m(t1)

√s=2 TeV; m(t1) = 200 GeV

→ theoretical uncertainty ≈ ±100% at LO

⇒ must include NLO corrections

page 24

Example: Top-squark production

LO graphs

q

q

g

t1

¯t1

g

g

σLO[gg] =α2

s

(5

48+

31m2

24s

)+

(2m2

3s+

m4

6s2

)log

1 − β

1 + β

](β2=1−4m2/s)

⇒ no MSSM parameter dependence

pp cross section: σ = Fnon−pert.(µ) ⊗(C0α

Bs (µ) + C1(µ)αB+1

s (µ) + . . .)pert.

Scale dependence through factorization of IR contributions and renormalization of UV contributions

NLO scale dependence (Beenakker, MK, Plehn, Spira, Zerwas)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

LO

NLO

LO

σ(pp– → t1t

−1+X) [pb]

LO

NLO

σ(pp → t1t−1+X) [pb]

µ/m(t1)

µ/m(t1)

√s=2 TeV; m(t1) = 200 GeV

→ theoretical uncertainty ≈ ±15% at NLO

page 25

Top-squark searches

Top-squark search in pp→ t1¯t1 → cχ0

1cχ01 channel (CDF PRD 2007)

)2) (GeV/c1t~M(

70 80 90 100 110 120 130 140 150

(pb)

2)) 10 χ∼

c→ 1t~

(BR

(×) 1t~ 1t~

→ p(pσ

1

10

102

CDF Upper Limit, 95% CLObservedExpected

Theory Cross Section (Prospino)NLO

Uncertainty (scale+PDF)

)-1CDF Run II Preliminary (295 pb

2)=50 GeV/c10χ∼M(

⇒ 105 GeV ≤Mt1≤ 130 GeV

page 26

Top-squark searches

Top-squark search in pp→ t1¯t1 → cχ0

1cχ01 channel (CDF PRD 2007)

)2) (GeV/c1t~M(

70 80 90 100 110 120 130 140 150

(pb)

2)) 10 χ∼

c→ 1t~

(BR

(×) 1t~ 1t~

→ p(pσ

1

10

102

CDF Upper Limit, 95% CLObservedExpected

Theory Cross Section (Prospino)NLO

Uncertainty (scale+PDF)

)-1CDF Run II Preliminary (295 pb

2)=50 GeV/c10χ∼M(

⇒ 105 GeV ≤Mt1≤ 130 GeV

page 26

Top-squark searches

Top-squark search in pp→ t1¯t1 → cχ0

1cχ01 channel (CDF PRD 2007)

→ no exclusion based on LO cross sections

page 27

MSSM particle production at the LHC

NLO SUSY-QCD corrections for MSSM particle production at hadron colliders

→ public code PROSPINO (Beenakker, Hopker, MK, Plehn, Spira, Zerwas)

10-2

10-1

1

10

10 2

10 3

100 150 200 250 300 350 400 450 500

⇑ ⇑ ⇑

⇑⇑

χ2oχ1

+

t1t−1

qq−

gg

νν−

χ2og

χ2oq

NLOLO

√S = 14 TeV

m [GeV]

σtot[pb]: pp → gg, qq−, t1t

−1, χ2

oχ1+, νν

−, χ2

og, χ2oq

References: Beenakker, Hopker, Spira, Zerwas, 1995, 1997; Beenakker, MK, Plehn, Spira, Zerwas, 1998; Baer, Hall, Reno, 1998; Beenakker, Klasen,

MK, Plehn, Spira, Zerwas, 1999; Beenakker, MK, Plehn, Spira, Zerwas, 2000; Berger, Klasen, Tait, 1999-2002; Beenakker, MK, Plehn, Spira, Zerwas,

2007

page 28

Current limits on sparticle masses

)2Gluino Mass (GeV/c0 100 200 300 400 500 600

)2S

quar

k M

ass

(GeV

/c

0

100

200

300

400

500

600-1DØ Run II Preliminary L=310 pb

UA

1

UA

2

LEP 1+2

CD

F IB

IA

DØ IB

DØ II

)10χ∼)<m(q~m(

no mSUGRA

solution+/

-χ∼

LEP

2

l~LEP2

mass limits (roughly)

Mg ∼> 250 GeV

Mq ≈Mgluino ∼> 400 GeV

Mt1 ∼> 100 GeV

Mχ01 ∼> 50 GeV

Mχ±

1 ∼> 100 GeV

Msleptons ∼> 100 GeV

page 29

Precision calculations for BSM physics at the LHC

no excess over SM expectations

→ exclude models / set limits on model parameters

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

exploring BSM models (later LHC phase)

→ determine masses & spins

page 30

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“look-alike models” (Hubisz, Lykken, Pierini, Spiropulu)

]

2m

ass [

GeV

/c

0

100

200

300

400

500

600

700

800

900

1000 LH2 NM6 NM4 CS7

HA

HWHZ

HidH

iu

0

1χ∼

±1

χ∼02

χ∼

Rd~Lu~Ru~Ld~

g~

1τ∼ Rl~

01

χ∼

±1

χ∼02

χ∼Ru~Rd~Lu~

1τ∼Ld~Rl

~

g~

0

1χ∼

1τ∼Rl~

±1

χ∼0

2χ∼

g~

Rd~ Ru~Lu~ Ld~

– Little Higgs model LH2 and

SUSY models NM4 and CS7

give same number of events

after cuts

– “twin models” LH2 and NM6

(SUSY) have different cross

sections and event counts

→ distinguish models with

same spectrum but different

spins through event count

page 31

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“look-alike models” (Hubisz, Lykken, Pierini, Spiropulu)

]

2m

ass [

GeV

/c

0

100

200

300

400

500

600

700

800

900

1000 LH2 NM6 NM4 CS7

HA

HWHZ

HidH

iu

0

1χ∼

±1

χ∼0

2χ∼

Rd~Lu~Ru~Ld~

g~

1τ∼ Rl~

0

1χ∼

±1

χ∼02

χ∼Ru~Rd~Lu~

1τ∼Ld~Rl

~

g~

0

1χ∼

1τ∼Rl~

±1

χ∼0

2χ∼

g~

Rd~ Ru~Lu~ Ld~

– Little Higgs model LH2 and

SUSY models NM4 and CS7

give same number of events

after cuts

– “twin models” LH2 and NM6

(SUSY) have different cross

sections and event counts

→ distinguish models with

same spectrum but different

spins through event count

page 31

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“look-alike models” (Hubisz, Lykken, Pierini, Spiropulu)

]

2m

ass [

GeV

/c

0

100

200

300

400

500

600

700

800

900

1000 LH2 NM6 NM4 CS7

HA

HWHZ

HidH

iu

0

1χ∼

±1

χ∼0

2χ∼

Rd~Lu~Ru~Ld~

g~

1τ∼ Rl~

0

1χ∼

±1

χ∼02

χ∼Ru~Rd~Lu~

1τ∼Ld~Rl

~

g~

0

1χ∼

1τ∼Rl~

±1

χ∼0

2χ∼

g~

Rd~ Ru~Lu~ Ld~

– Little Higgs model LH2 and

SUSY models NM4 and CS7

give same number of events

after cuts

– “twin models” LH2 and NM6

(SUSY) have different cross

sections and event counts

→ distinguish models with

same spectrum but different

spins through event count

page 31

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“ancient wisdom”: cross sections depend on spin, e.g.

q + q → q + ¯qq

q

g

t1

¯t1

g

t

t t1

¯t1

σLO[qq → q¯q] =α2

s

4

27β3 (β2 = 1 − 4m2/s)

c.f. top production:

σLO[qq → QQ] =α2

s

8

27

(s+ 2m2)

s2β

→ σtop/σstop ∼ 10 at the Tevatron

page 32

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“ancient wisdom”: cross sections depend on spin, e.g.

q + q → q + ¯qq

q

g

t1

¯t1

g

t

t t1

¯t1

σLO[qq → q¯q] =α2

s

4

27β3 (β2 = 1 − 4m2/s)

c.f. top production:

σLO[qq → QQ] =α2

s

8

27

(s+ 2m2)

s2β

→ σtop/σstop ∼ 10 at the Tevatron

page 32

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

“ancient wisdom”: cross sections depend on spin

(Kane, Petrov, Shao, Wang)

160 170 180 190 200mass HGeVL

0.5

1

5

10

50

100

CrossSection

HpbL

tst�s

tt�

CDFD0

→ no production of scalar quarks (assuming same mass and couplings as top. . . )

page 33

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

how to discriminate “look-alike models”? (Hubisz, Lykken, Pierini, Spiropulu)

(GeV/c)T

p0 100 200 300 400 500 600 700 800 900 1000

num

ber

of e

vent

s

0

200

400

600

800

1000

1200

1400– consider ratios of event counts, e.g.

σ(pT > 250, 500, . . . GeV)/σ

→ systematic uncertainties cancel

→ normalization important

– NLO affects shape of distributions:

K ≡σNLO(pp → tt)

σLO(pp → tt)

=

1.4 (pT > 100 GeV)

0.5 (pT > 1000 GeV)

→ no proper tools to perform realistic NLO analysis of BSM decay chains

page 34

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

how to discriminate “look-alike models”? (Hubisz, Lykken, Pierini, Spiropulu)

(GeV/c)T

p0 100 200 300 400 500 600 700 800 900 1000

num

ber

of e

vent

s

0

200

400

600

800

1000

1200

1400– consider ratios of event counts, e.g.

σ(pT > 250, 500, . . . GeV)/σ

→ systematic uncertainties cancel

→ normalization important

– NLO affects shape of distributions:

K ≡σNLO(pp → tt)

σLO(pp → tt)

=

1.4 (pT > 100 GeV)

0.5 (pT > 1000 GeV)

→ no proper tools to perform realistic NLO analysis of BSM decay chains

page 34

Precision calculations for BSM physics at the LHC

excess in inclusive jets + ET,miss signal (early LHC phase)

→ discriminate BSM models

how to discriminate “look-alike models”? (Hubisz, Lykken, Pierini, Spiropulu)

(GeV/c)T

p0 100 200 300 400 500 600 700 800 900 1000

num

ber

of e

vent

s

0

200

400

600

800

1000

1200

1400– consider ratios of event counts, e.g.

σ(pT > 250, 500, . . . GeV)/σ

→ systematic uncertainties cancel

→ normalization important

– NLO affects shape of distributions:

K ≡σNLO(pp → tt)

σLO(pp → tt)

=

1.4 (pT > 100 GeV)

0.5 (pT > 1000 GeV)

→ no proper tools to perform realistic NLO analysis of BSM decay chains

page 34

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

Mass measurements from cascade decays, e.g.

��

��� � �� �

�� �

��

���� �

��� �� �

Allanach et al.

0

500

1000

1500

0 20 40 60 80 100 m(ll) (GeV)

Eve

nts/

1 G

eV/1

00 fb

-1

→ kinematic endpoint (mmaxll )2 = (m2

χ02

−m2

lR)(m2

lR−m2

χ01

)/(m2

lR)

sensitive to mass differences

page 35

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

Mass measurements from total rate, e.g. gluino mass in SUSY models with heavy

scalars (FP dark matter scenarios)

LO

NLO

σ(pp→ gg + X) [pb]

mg[GeV]

140012001000800600

10

1

0.1

0.01

0.001

mgluino =

{785 ± 35 (LO)

870 ± 15 (NLO)

page 36

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

Mass measurements from total rate, e.g. gluino mass in SUSY models with heavy

scalars (FP dark matter scenarios)

(Baer, Barger, Shaunghnessy, Summy, Wang)

1000 1500 2000mg~

0

10

20

30

40

σ (f

b)

TH100 fb-1 errorTH ±15%TH ±15% ±100%BGBG

LE

P2 e

xclu

ded

→ ∆mgluino = ±8%

page 37

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

no spin correlations:

0

0.5

1

1.5

2

0 50 100 150 200 250 300

tree unpol. dσ/dmql+near

mql+near[GeV]

page 38

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

with spin correlations:

0

0.5

1

1.5

2

0 50 100 150 200 250 300

tree pol.tree unpol

dσ/dmql+near

mql+near[GeV]

cannot determine mql+neardistribution experimentally

→ consider charge asymmetry A = (dσ/dmql+ − dσ/dmql−)/(dσ/dmql+ + dσ/dmql−)

page 39

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

with spin correlations:

0

0.5

1

1.5

2

0 50 100 150 200 250 300

tree pol.tree unpol

dσ/dmql+near

mql+near[GeV]

cannot determine mql+neardistribution experimentally

→ consider charge asymmetry A = (dσ/dmql+ − dσ/dmql−)/(dσ/dmql+ + dσ/dmql−)

page 39

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

(Barr)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500mlq / GeV

A+-

cannot determine mql+neardistribution experimentally

→ consider charge asymmetry A = (dσ/dmql+ − dσ/dmql−)/(dσ/dmql+ + dσ/dmql−)

page 40

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

with spin correlations:

0

0.5

1

1.5

2

0 50 100 150 200 250 300

tree pol.tree unpol

dσ/dmql+near

mql+near[GeV]

page 41

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

with spin correlations @ NLO:

0

0.5

1

1.5

2

0 50 100 150 200 250 300

tree pol.tree unpolNLO pol

dσ/dmql+near

mql+near[GeV]

→ radiative corrections affect shape of distributions (Horsky, MK, Muck, Zerwas)

page 42

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

qL

qL

lR-

χ20

lR+ (near)

lR- (far)

χ10

(Horsky, MK, Muck, Zerwas)

A (NLO)A (Born)

Mql

350300250200150100500

1

0.5

0

−0.5

−1

consider charge asymmetry A = (dσ/dmql+ − dσ/dmql−)/(dσ/dmql+ + dσ/dmql−)

→ radiative corrections cancel in charge asymmetry

page 43

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

consider invariant jet-mass distributions in decay chains like

pp→ g + g → qqR + qqL → qqχ01 + qqχ0

2

g

g

q

q

q

q

→ information on gluino spin in jet event shapes (MK, Popenda, Spira, Zerwas)

page 44

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins

consider invariant jet-mass distributions in decay chains like

pp→ g + g → qqR + qqL → qqχ01 + qqχ0

2

uRuL :< Mjet >= 102 GeVuRuR :< Mjet >= 116 GeV

without spin correlations: < Mjet >= 116 GeV

with the lowest pT

Mjet calulated from the two jets

mχ1/2= 98/184 GeV

muR/L= 547/565 GeV

mg = 607 GeVSPS1a’:

1/σtot dσ/dMjet (g(→ uu(→ uχ))g(→ uu(→ uχ)) [1/GeV]

Mjet[GeV]

5004003002001000

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

→ information on gluino spin in jet event shapes (MK, Popenda, Spira, Zerwas)

page 45

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins . . . or the number of extra dimensions?

consider graviton production in ADD scenarios (Arkani-Hamed, Dimopoulos, Dvali)

pp→ G+ jet → monojet signature

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

� � � � � � � � � � � � � � � �

pmissT ��� � � �

dpmiss

T

[pb/GeV]

Z + jet� � �� !" # $ % # �& $

δ = 3, Ms = 5TeVδ = 4, Ms = 5TeVδ = 5, Ms = 5TeV

→ determine number of extra dimensions δ?page 46

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins . . . or the number of extra dimensions?

consider graviton production in ADD scenarios (Arkani-Hamed, Dimopoulos, Dvali)

pp→ G+ jet → monojet signature

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

' ( ' ' ) ' ' ' ) ( ' ' * ' ' '

pmissT +�, - . /

dpmiss

T

[pb/GeV]

Z + jet, 0 12 3 45 6 7 3 8 6 19 7

δ = 3, Ms = 5TeVδ = 4, Ms = 5TeVδ = 5, Ms = 5TeV

→ spoiled by QCD uncertainties. . .page 47

Precision calculations for BSM physics at the LHC

exploring BSM models (later LHC phase)

→ determine masses & spins . . . or the number of extra dimensions?

consider graviton production in ADD scenarios (Arkani-Hamed, Dimopoulos, Dvali)

pp→ G+ jet → monojet signature

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

: ; : : < : : : < ; : : = : : :

pmissT >�? @ A B

dpmiss

T

[pb/GeV]

Z + jet? C DE F GH I J F K I DL J

δ = 3, Ms = 5TeVδ = 4, Ms = 5TeVδ = 5, Ms = 5TeV

→ include NLO-QCD corrections (Karg, MK, Li, Zeppenfeld, in progress)

page 48

Progress in SUSY precision calculations at the LHC

Sparticle production cross sections

– NLO QCD → Prospino: Beenakker, Hopker, MK, Plehn, Spira, Zerwas(cf. Baer, Hall, Reno; Berger, Klasen, Tait)

– threshold summation for Mq , Mg∼> 1 TeV

(Bozzi, Fuks, Klasen; Kulesza, Motyka; Langenfeld, Moch;Beenakker, Brensing, MK, Kulesza, Laenen, Niessen)

– electroweak corrections(Hollik, Kollar, Mirabella, Trenkel; Bornhauser, Drees, Dreiner, Kim;Beccaria, Macorini, Panizzi, Renard, Verzegnassi)

– beyond MSSM: NLO QCD for RPV SUSY(Debajyoti Choudhury, Swapan Majhi, V. Ravindran; Yang, Li, Liu, Li; Dreiner, Grab, MK, Trenkel)

Sparticle decays

– total rates → Sdecay: (Muhlleitner, Djouadi, Mambrini) plus work by many authors. . . ...

– only few results for shapes (Drees, Hollik, Xu; Horsky, MK, Muck, Zerwas)

Sparticle production ⊕ decay: generic BSM cascades (SUSY, UEDs, LH,. . . )

– so far only tree level → challenge for LHC theory community. . .

page 49

Progress in SUSY precision calculations at the LHC

Sparticle production cross sections

– NLO QCD → Prospino: Beenakker, Hopker, MK, Plehn, Spira, Zerwas(cf. Baer, Hall, Reno; Berger, Klasen, Tait)

– threshold summation for Mq , Mg∼> 1 TeV

(Bozzi, Fuks, Klasen; Kulesza, Motyka; Langenfeld, Moch;Beenakker, Brensing, MK, Kulesza, Laenen, Niessen)

– electroweak corrections(Hollik, Kollar, Mirabella, Trenkel; Bornhauser, Drees, Dreiner, Kim;Beccaria, Macorini, Panizzi, Renard, Verzegnassi)

– beyond MSSM: NLO QCD for RPV SUSY(Debajyoti Choudhury, Swapan Majhi, V. Ravindran; Yang, Li, Liu, Li; Dreiner, Grab, MK, Trenkel)

Sparticle decays

– total rates → Sdecay: (Muhlleitner, Djouadi, Mambrini) plus work by many authors. . . ...

– only few results for shapes (Drees, Hollik, Xu; Horsky, MK, Muck, Zerwas)

Sparticle production ⊕ decay: generic BSM cascades (SUSY, UEDs, LH,. . . )

– so far only tree level → challenge for LHC theory community. . .

page 49

Progress in SUSY precision calculations at the LHC

Sparticle production cross sections

– NLO QCD → Prospino: Beenakker, Hopker, MK, Plehn, Spira, Zerwas(cf. Baer, Hall, Reno; Berger, Klasen, Tait)

– threshold summation for Mq , Mg∼> 1 TeV

(Bozzi, Fuks, Klasen; Kulesza, Motyka; Langenfeld, Moch;Beenakker, Brensing, MK, Kulesza, Laenen, Niessen)

– electroweak corrections(Hollik, Kollar, Mirabella, Trenkel; Bornhauser, Drees, Dreiner, Kim;Beccaria, Macorini, Panizzi, Renard, Verzegnassi)

– beyond MSSM: NLO QCD for RPV SUSY(Debajyoti Choudhury, Swapan Majhi, V. Ravindran; Yang, Li, Liu, Li; Dreiner, Grab, MK, Trenkel)

Sparticle decays

– total rates → Sdecay: (Muhlleitner, Djouadi, Mambrini) plus work by many authors. . . ...

– only few results for shapes (Drees, Hollik, Xu; Horsky, MK, Muck, Zerwas)

Sparticle production ⊕ decay: generic BSM cascades (SUSY, UEDs, LH,. . . )

– so far only tree level → challenge for LHC theory community. . .

page 49

Precision calculations at the LHC: conclusions & outlook . . .

Signal cross sections in the SM and MSSM are (or will rather soon be) known at

NLO accuracy

– theoretical uncertainty ≈ 15% for inclusive cross sections

– larger uncertainty for exclusive observables

– can predict distributions and observables with cuts

– in general no parton showers/hadronization

Progress in matching NLO calculations with parton showers and hadronization

Many backgrounds (multi-leg processes) are only know at LO

(Need breakthrough in techniques to do pp→> 4 partons at NLO?)

First LHC data will allow us to focus on the relevant processes. . .

page 50

Precision calculations at the LHC: conclusions & outlook . . .

Signal cross sections in the SM and MSSM are (or will rather soon be) known at

NLO accuracy

– theoretical uncertainty ≈ 15% for inclusive cross sections

– larger uncertainty for exclusive observables

– can predict distributions and observables with cuts

– in general no parton showers/hadronization

Progress in matching NLO calculations with parton showers and hadronization

Many backgrounds (multi-leg processes) are only know at LO

(Need breakthrough in techniques to do pp→> 4 partons at NLO?)

First LHC data will allow us to focus on the relevant processes. . .

page 50

Precision calculations at the LHC: conclusions & outlook . . .

Signal cross sections in the SM and MSSM are (or will rather soon be) known at

NLO accuracy

– theoretical uncertainty ≈ 15% for inclusive cross sections

– larger uncertainty for exclusive observables

– can predict distributions and observables with cuts

– in general no parton showers/hadronization

Progress in matching NLO calculations with parton showers and hadronization

Many backgrounds (multi-leg processes) are only know at LO

(Need breakthrough in techniques to do pp→> 4 partons at NLO?)

First LHC data will allow us to focus on the relevant processes. . .

page 50

Precision calculations at the LHC: conclusions & outlook . . .

Signal cross sections in the SM and MSSM are (or will rather soon be) known at

NLO accuracy

– theoretical uncertainty ≈ 15% for inclusive cross sections

– larger uncertainty for exclusive observables

– can predict distributions and observables with cuts

– in general no parton showers/hadronization

Progress in matching NLO calculations with parton showers and hadronization

Many backgrounds (multi-leg processes) are only know at LO

(Need breakthrough in techniques to do pp→> 4 partons at NLO?)

First LHC data will allow us to focus on the relevant processes. . .

page 50

top related