practical aspects of uas-based point cloud generation · practical aspects of uas-based point cloud...

Post on 16-May-2019

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Practical Aspects of UAS-based Point Cloud Generation

OTEC 2015 ConferenceOctober 27–30, 2015, Columbus, Ohio

Greg Jozkow

Acknowledgement to Charles Toth

2

Introduction

Geospatial data acquisition (GIS) with small UAS (sUAS)

AdvantagesInexpensive platformLightweight vehicle and sensorsEasy deployment and operationMinimal logisticsRelatively high resolution data

ChallengesLimited payloadLimited operating rangeShort flight timeModest/low sensor performanceAccurate georeferencing (e.g. direct georeferencing needed for LiDAR)

3

Typical Workflow for UAS‐based GIS Data

Present practice: Data acquisition includes

Mainly optical image capture  Limited logging of georeferencing data

Sensor orientation is based on image block adjustment; primarily using ground control and rarely air control

Dense image matching is used to generate point cloud Point cloud processing includes filtering, DEM generation, segmentation Orthoimage and mosaic generation Quality control, accuracy assessment

Ongoing developments: Improving sensor technologies; e.g., UAS‐specific LiDAR or HSI camera More georeferencing options; e.g., dual‐frequency GPS, tactical grade IMU

Research topics and directions: Impact of GPS/IMU on point cloud generation Photogrammetrically derived point cloud vs. LiDAR point cloud

4

UAS Point Clouds

Laser scanning

Dense image matching

5

UAS Point Clouds

Semi‐Global Matching (SGM), pixel‐based matching, based on the disparity optimization

First term: matching cost pixelwise Second term: penalty for all pixels with different disparity (D)

Matching cost was MI, now is Census (Hamming distance) Fast implementation (GPU, FPGA)

H. Hirschmuller, Semi‐Global Matching – Motivation, Developments and Applications, PhoWo 2011, Ed. D. Fritsch

6

(b) Indirect georeferencing

Imaging is used for orientation first (past practice) and SLAM (presently) and then for mapping, reconnaissance, etc.

Georeferencing/Navigation Alternatives

(a) Direct georeferencing

Imaging is used formapping, reconnaissance, etc.

(c) Integrated sensor orientation (ISO)

Imaging is used for TRN and orientation first (SLAM), and then for mapping, reconnaissance, etc.

UAS practice

7

Direct vs. Indirect Georeferencing

Direct georeferencing (high‐accuracy) Carrier‐phase differential GPS (cm‐level accuracy) Medium‐grade (tactical) IMU (3‐15°/h gyro) Optional sensors (magnetometer, barometer, etc.) Time synchronization of sensors is needed Sensor and intra‐sensor calibration, such as boresighting, are important

Indirect georeferencing Image overlap requirements  Image feature extraction and matching Bundle block adjustment (AT, aerial triangulation) Ground control is needed (GPS‐surveyed natural and/or signalized targets) Camera self‐calibration capability

ISO georeferencing Combined benefits of both methods, platform navigation data can be used as air 

control; provides most robust solution

8

Error Characterization

Direct orientation

Error propagation has an extrapolation character

IO errors are uncompensated (!)

Larger variances of reconstructed points

Indirect orientation (integrated sensor orientation)

Error propagation has an interpolation character

Interior orientation errors are absorbed by AT

Platform orientation accuracy is not of interest

Wrong IO and AT => optimal EO reconstruction 

9

Error Characterization

10

Test Configuration: Navigation Sensors

Epson IMUM‐G362PDC1

Wookong‐M autopilot:L1 GPS, MEMS IMU,magnetometer(platform navigation)

Antcom L1/L2 antennaNovAtel OEM615 GPS

Garmin GPS‐18LVL1 GPS(Velodyne configuration)

Gigabyte GB‐BXi7‐4500PC (data recording)

Solmeta Geotagger N3L1 GPS(Nikon configuration)

MicroStrain IMU3DMGX3‐35 with:L1 GPS, magnetometer

11

Small Navigation UAS Sensors: GPS

Dual‐frequency GPSNovAtelOEM615

Event input in YesPPS out YesSingle Point L1 RMS 1.5 mSingle Point L1/L2 RMS 1.2 mTime accuracy 20 nsPower requirements 1 WWeight without /with equipment

24 gram300 gram

Single‐frequency GPS(autopilot systems)

u‐bloxLEA‐6H 

No raw dataNo timingHorizontal position accuracy (without aiding)

2.5 m

Time pulse accuracy 30 nsPower requirements 121 mWWeight without /with equipment

2 gram17 gram

12

Small Navigation UAS Sensors: IMU

IMUEpsonM‐G362PDC1

MicroStrain3DM‐GX3‐35

Autopilotsensors

Analog DevicesADIS16364

Gyro bias 3 °/ h 18 °/ h > 15 °/ h 25 °/ hGyro random walk N/A 0.1 °/ h1/2 N/A 2 °/ h1/2

Accelerometer bias 40 mg < 100 mg > 60 mg 8 mg

Accelerometer noise 40 mg / Hz1/2100 mg / Hz1/2

> 250 g / Hz1/2

270 g / Hz1/2

Power requirements30 mAvia USB

200 mAvia USB

> 4 mA(IMU only)

49 mA

Weight without /with equipment

7 gram30 gram

23 gram200 gram > 50 gram

16 gram

13

Test Configuration: Imaging Sensors

Nikon D800 Full frame 36 Mpix DSLR camera Nikon Nikkor AF‐S 50 mm f/1.4G lens 1 s triggering (1 FPS) Fixed to the platform in nadir facing direction

GoPro Hero 3+ Black Edition 12 Mpix Non‐stock 5.4 mm lens 0.5 s triggering (2 FPS) Gyro stabilized gimbal (vertical images)

Velodyne HDL‐32E Usable returns up to 70 m 32 laser diodes 700,000 pints/s FOV: + 30°(front)  to  ‐ 10°(rear) @ 360°

14

Test Flights: Topographical Mapping

Site 1 2 3 4Flying height [m] 120 125 125 25Flying speed [m/s] 4 4 4 4No. of flight lines 2 2 2 3GSD [mm] Nikon/GoPro

12‐

12‐

12‐

2.57

Velodyne flight ‐ ‐ ‐ +No of GCPs 31 0 15 19

1 2 3

4

15

Results: GPS Receivers’ Performance at Site 4

Positioning accuracy [m]

Geotagger MicroStrain NovAtel Indirect georeferencing (Nikon images)

Positioning method

Single Point (code)

Single Point (code)

Differential (carrier‐phase)

Image bundle block adjustment based on 15 

accurate GCPs

Accuracy According specification

Computed by receiver

Computed in RTKlib

Computed from residuals at GCPs

Horizontal 3.0 4.6 0.029 0.016

Vertical N/A 5.6 0.046 0.018

3D N/A 7.2 0.054 0.025

Indirect georeferencing solution (AT) was used subsequently as reference(note image center is not constrained in AT)

16

Results: Direct Georeferencing at Site 4

Position RMSE [m]

Horizon

tal

Vertical

3D

A 5.1 10.2 11.4

B 8.6 16.5 18.6

C 0.025 0.035 0.043

A – GeotaggerB – MicroStrainC – NovAtelReference (AT)

17

Results: Point Cloud Generation from Images at Site 4

Nikon 108 images (more Mpix) lower FOV (smaller area, more gaps) ~ 2.5M points (higher density) lower noise

GoPro 131 images (less Mpix) larger FOV (larger area, less gaps) ~ 0.6M points (lower density) high noise

3D RMSE0.07 m

3D RMSE0.77 m

18

Results: Nikon vs. GoPro, Site 4

19

Results: GoPro Image Limitations at Site 4

Strange image distortion caused by rolling shutter impossible to model additional blurResulting in poor AT, (3D RMSE: 0.42 m) noisy and poor point cloud 

(3D RMSE: 0.77m)

20

Results: Point Cloud Generation by Dense Matching at Site 1

Software package A B CAverage point spacing [m] 0.03 0.01 0.03Average density [points/m2] 846 9999 5933D RMSE [m] 0.09 0.13 0.52

A B C

21

Results: Point Cloud Generation from LiDAR Data at Site 4

Ongoing work, georeferencing and calibration issues are not yet finished

10 m

0

298.0 m

295.0 m

292.5 m

290.0 m

287.5 m

285.0 m

283.0 m

Intensity

Elevation

Point cloud density [points/m2]Nikon 12,429GoPro 7,175Velodyne 867

160

128

96

64

32

22

Cross Comparison and Status

GCP GPS GPS/MEMS IMU Carrier‐based GPS/MEMS IMU Density

GoProYes Good1 Good1 Good1 High

No Fair2 Fair2 Good1 High

NikonYes Excellent Excellent Excellent High

No Fair3 Fair3 Excellent High

Velodyne N/A No No Good/Excellent (not yet validated) Medium

Point cloud generation performance w.r.t. georeferencingaccuracy and image sensor quality

1) Point cloud accuracy limited by imaging sensor performance2) Poor absolute accuracy and fair relative accuracy3) Poor absolute accuracy and good relative accuracy

23

Very high resolution Accurate georeferencing Features on wires Dense matching – point cloud 

(similarity to LiDAR)

UAS imagesGSD 5 mm

(on wires)10 pix across the wire

Flying height55 m over wires

UAS Point Cloud Generation in non Topographic Applications

24

Data acquisition Image block adjustment

Image dense matching

(point cloud)

Point cloud filtering

Point cloud segmentation / wires detection

3D geometry extraction 

(catenary fitting)

Hi‐res imagesHigh overlapGCPs and/or high quality navigation data

ATBundle adjustment

Variety of methods, e.g. SGM

Unwanted points removal

Groups of points belonging to single wire and sag

Horizontally – lineVertically – catenaryRobust LS

Semi‐manual in this investigation

Few software packages tested

3D Geometry Extraction: Workflow

25

Single section of transmission line between two poles Two levels of wires 2 wires at upper level U 3 wires at lower level L

Expected different azimuth for U2 wire due to different mount

Test Object

26

Camera Nikon D800 (full‐frame 

36Mpix DSLR) Nikon Nikkor AF‐S 50 

mm f/1.4G 1 FPS

10 GCPs GPS‐RTK 3D RMSE 1.5 cm

10 GCPs GPS‐RTK 3D RMSE 1.5 cm

Image param. Ground Wire

GSD [mm] 8 5‐6

Endlap [%] 87 81‐84

Sidelap [%] 69 55‐61

Test Data Acquisition

27

Number of pointsL1 L2 L3 U1 U2

46,021 25,423 35,247 17,415 3,259

Point Cloud Filtering and Segmentation

28

Results: Fitted Catenaries

Catenaries fitting 3D RMSE = 10 cm

29

Conclusions

Point clouds can be easily generated from UAS imagery; they are less/not dependent on the accuracy of platform direct georeferencing

Point cloud quality and accuracy are strongly dependent on the camera geometrical properties and image scale (cm‐ and dm‐level accuracy) as well as the matching method/implementation used

UAS point clouds have potential in non topographic applications

Typically used single‐frequency GPS receivers (single solution) are not suitable for UAS georeferencing for precise mapping purposes (m level accuracy)

Miniaturized dual‐frequency GPS receivers (differential solution) are fit for direct georeferencing of UAS (cm level accuracy)

Using ground control and/or accurate air control provides the highest orientation accuracy for all sensors

More investigation on MEMS IMU is needed on UAS (advancing technology) More work on high accuracy GPS/MEMS IMU solution is required to assess 

LiDAR point cloud performance and compare it to image derived point clouds

30

THANK YOU!

top related