piezoelectric shunt damping

Post on 08-May-2015

618 Views

Category:

Education

6 Downloads

Preview:

Click to see full reader

DESCRIPTION

Piezoelectric Materials. Passive damping using shunt circuits Finite Element Modeling #WikiCourses http://wikicourses.wikispaces.com/Topic02+Piezoelectric+Shunt+Damping

TRANSCRIPT

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Damping with Piezoelectric Material

Mohammad Tawfik

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Objectives

• General Introduction to smart materials and structures

• Recognize the nature of piezoelectric material

• Understand the use of passive shunt circuits

• Dynamics of structures with shunt piezoelectric materials

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures: What?

• Controlled change in properties– Change in mechanical properties– Change in geometry

• Energy Converters!

– Mechanical Electrical (Piezoelectric)

– Heat Mechanical (SMA)– Mechanical Heat (Viscoelastic)– Etc…

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structure: Why?

• Vibration Damping

• Shape Control

• Noise Reduction

• Vibration/Damage Sensing

• Heat Sensing

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures: Classification

Wada, Fanson, and Crawly

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Materials

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

What is Piezoelectric Material?

• Piezoelectric Material is one that possesses the property of converting mechanical energy into electrical energy and vice versa.

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Materials

• Mechanical Stresses Electrical Potential Field : Sensor (Direct Effect)

• Electric Field Mechanical Strain : Actuator (Converse Effect)

Clark, Sounders, Gibbs, 1998

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Conventional Setting

Conductive Pole

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Sensor

• When mechanical stresses are applied on the surface, electric charges are generated (sensor, direct effect).

• If those charges are collected on a conductor that is connected to a circuit, current is generated

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Actuator

• When electric potential (voltage) is applied to the surface of the piezoelectric material, mechanical strain is generated (actuator).

• If the piezoelectric material is bonded to a surface of a structure, it forces the structure to move with it.

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Other types of Piezo!

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

1-3 Piezocomposites

T 3=cE

33S 3+e33E 3

D3=e33S 3+εS

33E3

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Active Fiber Composites (AFC)

ceff

11=c

E11

+v pe31

2

(vC ε 33+vp ε

S33)

eeff

31=ε33e31

vC ε33+vpε

S33

εeff

33=ε33 ε

S33

(vC ε33+vp ε

S33)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Applications of Piezoelectric Materials in Vibration Control

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Collocated Sensor/Actuator

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Self-Sensing Actuator

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Hybrid Control

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Passive Damping / Shunted Piezoelectric Patches

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Passively Shunted Networks

Resonant

Capacitive Switched

Resistive

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Adaptive Structures

Wada, Fanson, and Crawly

Passive Networks

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

How does it work?

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Physical)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Physical)

•Mechanical energy is converted to electrical energy through piezoelectric effect•Electric charge is driven by potential difference through the circuit•Energy is dissipated in the resistance

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Electric)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Energy)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Mechanical Impedance / Viscoelastic Analogy

Z11RES

=1−k31

2

1+iρ3

Z11RSP=1−k 31

2 δ2

γ 2+δ 2rγ+δ2

Resistor Shunt

R-L Shunt

r=RC ωn (dissipation tuning parameter )

γ=sωn

( complex non-dimensional frequency )

δ=ωe

ωn

( resonant shunted piezoelectric frequency tuning parameter )

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Viscoelastic analogy

• The model of the shunted piezoelectric patches, in many researches, is reduced to an equivalent of a viscoelastic patch.

• But Piezoelectric patches are elements that respond to the total strain rather than the local strain!

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Problem With Viscoelastic Analogy!

Base structure

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modeling of Piezoelectric Structures

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive Relations

• The piezoelectric effect appears in the stress strain relations of the piezoelectric material in the form of an extra electric term

• Similarly, the mechanical effect appears in the electric relations

S=s11T +d 31E

D=d 31T 1+¿33E

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive Relations

• ‘S’ (capital s) is the strain• ‘T’ is the stress (N/m2)• ‘E’ is the electric field (Volt/m)• ‘s’ (small s) is the compliance; 1/stiffness

(m2/N)• ‘D’ is the electric displacement, charge per

unit area (Coulomb/m)• Electric permittivity (Farade/m)¿

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Coupling

• d31 is called the electromechanical coupling factor (m/Volt)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Manipulating the Equations

D=QA

D=1A∫ Idt=

IAs

• The electric displacement is the charge per unit area:

• The rate of change of the charge is the current:

• The electric field is the electric potential per unit length: E=

Vt

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Using those relations:

• Using the relations:

• Introducing the capacitance:

• Or the electrical admittance:

S=s11T +d 31

tV

I=Ad 31 sT 1+A∈33 s

tV

I=Ad 31 sT 1+CsV

I=Ad 31 sT 1+YV

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

For open circuit (I=0)

• We get:

• Using that into the strain relation:

• Using the expression for the electric admittance:

V=−Ad 31 s

YT 1

S=s11T−Asd 31

2

tYT 1

S=s11(1−d 31

2

¿33 s11)T 1

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The electromechanical coupling factor

• Introducing the factor ‘k’:

• ‘k’ is called the electromechanical coupling factor (coefficient)

• ‘k’ presents the ratio between the mechanical energy and the electrical energy stored in the piezoelectric material.

• For the k13, the best conditions will give a value of 0.4

S=s11(1−k312 )T 1

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Different Conditions

• With open circuit conditions, the stiffness of the piezoelectric material appears to be higher (less compliance)

• While for short circuit conditions, the stiffness appears to be lower (more compliance)

S=s11(1−k312 )T 1 == sDT 1

S=s11T=sET

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Different Conditions

• Similar results could be obtained for the electric properties; electric properties are affected by the mechanical boundary conditions.

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Damping of Structural Vibration with Piezoelectric Materials and

Passive Electrical NetworksN. W. HAGOOD AND A. VON

FLOTOWJournal of Sound and Vibration (1991)

146(2), 243-268

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Constitutive Relations for Piezoelectric Materials

• The constitutive relation is:

• Where:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive relation (cont’d)

• The electric permiativity:

• Electromechanicalcoupling:

• Mechanicalcompliance:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Electrical relation

• Into constitutive relations:

• Where the capacitance is:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electric admittance

• Introducing the electric admittance:

• Generally; with a shunt circuit:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Model

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Remember

• The electric admittance is the reciprocal of the electric impedance.

• Also, you may have up to three circuits:

Z EL=1

Y EL

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

From Constitutive Relations

• The voltage may be written as:

• Into the strain equation

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Compliance

• The Electromechanical Compliance

• Or

• Where

• Generally:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Mi matrices

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• The compliance:• Introducing the

electromechanical coupling coefficient:

• The compliance becomes:

• For open circuit conditions

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• For open circuit, the compliance becomes:

• A similar expressions for capacitance in case of zero stress is:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• Introducing the mechanical impedance:(Which is the reciprocal of the compliance)

• We may write the non-dimensional mechanical impedance:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Complex Modulus

• Now, let’s reintroduce the complex modulus of the viscoelastic material:

• Where:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• For the case or resistive shunting, the resistance and the capacitance are in parallel 1

Z EL=

1

ZD+

1

Z SU=Cs+

1R

=RCs+1

R

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• Recall:

• Using the previous results:

• Simplifying:

Z jjME

=Z jjRES

=1−k ij

2

1−k ij2( RCs

1+RCs )

Z jjRES

=1−k ij

2

1+(1−k ij2 )RCs

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• Substituting s=iω and

• Introducing the non-dimensional parameter ρ=RCω, we get:

• Finally:

Z jjRES=1−

k ij2

1+(1−k ij2 ) ρi

=1−k ij

2

1+(1−k ij2 )

2ρ2

+k ij

2 (1−k ij2) ρi

1+(1−k ij2 )

2ρ2

Z jjRES

=(1−k ij

2

1+(1−k ij2)

2ρ2 )(1+

k ij2 ρ

1+(1−k ij2 ) ρ2

i)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

E Current

Eta Current

E von Flotto

Eta von Flotto

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Homework #11

1. Derive the equations for the RL shunt circuit.

2. Plot the frequency response of piezoelectric bar with a shunt circuit (R & RL)

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• For the case or RL shunting, the resistance and the inductance are in series and are in parallel with the capacitance

1

Z EL=

1

ZD+

1

Z SU=Cs+

1Ls+R

=LCs2+RCs+1

Ls+R

Z EL=LCs2+RCs

LCs2+RCs+1

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• Recall:

• Using the previous results:

• Simplifying:

Z jjME

=Z jjRSP

=1−k ij

2

1−k ij2( LCs2+RCs

LCs2+RCs+1)

Z jjRSP=

(1−k ij2 )(LCs2+RCs+1)

1+(1−k ij2 )(LCs2+RCs )

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• Ignoring (1-k2) in the denominator:

Z jjRSP=1−k ij

2

ωe2

ωn2

s2

ωn2+ωe

2

ωn2RC ωn

sωn

+ωe

2

ωn2

Z jjRSP=1−k ij

2 δ 2

γ2+δ2 rγ+δ 2

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

Z jjRSP=

(1−k ij2 )( s

2

ωe2+RC

ωn

ωn

s+1)1+(1−k ij

2 )( s2

ωe2+RC

ωn

ωn

s)• Using the full

term:

Z jjRSP=

(1−k ij2 )( s

2

ωn2+ωe

2

ωn2RC

ωn

ωn

s+ωe

2

ωn2 )

ωe2

ωn2+(1−k ij

2)( s2

ωn2+ωe

2

ωn2RC

ωn

ωn

s)Z jjRSP=

(1−k ij2 )(γ 2+δ2rγ+δ2 )

δ2+(1−k ij

2 )(γ2+δ2 rγ )

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example: Hagood results

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Comparing results

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modulus of Elasticity

• Recall that:

• And:

• Where:

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modulus of Elasticity

• Substituting:

• Getting the stiffness:

• Simplifying:

s jjSU=

A j

Z jjSU L j s

E jjSU

=Z jjSU L j s

A j

=Z jj

DZ jjME L j s

A j

E jjSU

=Z jj

ME

s jjD

=Z jj

ME

s jjE (1−k ij

2 )

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Finite Element Model

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Recall

• Recall the constitutive relations of Piezoelectric materials:

• Rearranging the terms:

S1=s11T 1+d 31 E3

D3=d 31T 1+¿33E3

T 1=1

s11

D S1−h31 D3

E3=−h31S 1+1

¿33SD3

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Where:

h31=d 31

s11 ∈33(1−k312 )

¿33s =¿33(1−k 31

2 )s11D=s11(1−k 31

2 )

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Potential Energy

• Writing the expression for the potential energy of the shunted piezoelectric material:

U=12∫0

l

S 1T 1 Adx+12∫0

l

D3E 3Adx

U=12∫0

l

S 1( S1

s11D−h31D3)Adx+ 1

2∫0

l

D3(−h31 D3+D3

¿33S )Adx

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The interpolation functions

u ( x )=(1− xl )u1+( xl )u2=⌊N ( x ) ⌋{ue}

d ( x)=(1−xl )d 1+( xl )d 2=⌊N (x) ⌋ {d e}

S1 (x )=du ( x)dx

=(−1l )u1+(1

l )u2=⌊N x ( x)⌋ {ue }

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Stiffness Matrices

k e=1

s11D∫

0

l

{N x}⌊ N x ⌋ Adx

k D=1

¿33S ∫

0

l

{N }⌊N ⌋Adx

k eD=−h31∫0

l

{N x}⌊N ⌋Adx

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Kinetic Energy

T=12∫0

l

ρ u2Adx

me= ρA∫0

l

{N }⌊N ⌋dx

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

External Work

W=∫0

l

VDbdx=∫0

l

(L I+RI )Dbdx=∫0

l

(LQ+RQ )Dbdx

¿∫0

l

A ( L D+R D )Dbdx

mD=AbL∫0

l

{N }⌊N ⌋dx cD=AbR∫0

l

{N }⌊N ⌋dx

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Element Equation

[me 0

0 mD ]{ueD e

}+[0 00 cD ]{

ueDe

}+[ k e k eDkDe kD ]{ueDe

}={ f0 }

top related