pictures of monomial ideals - loras...

Post on 13-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Pictures of Monomial Ideals

Angela Kohlhaas

Bi-State Math Colloquium

February 20, 2013

Why study ideals?

O Solving Equations

O Linear

O Quadratic

O Cubic

O Higher degree?

O Systems of

Equations

O Several variables

O Linear

O Higher degree?

For now, think of ideals as sets of polynomials

Ideals arise in Ring Theory

A ring ๐‘น (commutative, with identity) is a set

with the following properties:

O Closed under addition and multiplication

O Associative and commutative under

addition and multiplication

O Additive identity (0)

O Additive inverses

O Multiplicative identity (1)

O May NOT have multiplicative inverses

O If all nonzero elements do, itโ€™s called a field.

Examples of Rings

O โ„, the set of real numbers

O โ„š, the set of rational numbers

O โ„ค, the set of integers

O โ„ค ๐‘ฅ , polynomials in one variable with

integer coefficients

O โ„ ๐‘ฅ, ๐‘ฆ , polynomials in two variables with

real coefficients

Ideals

An ideal ๐‘ฐ is a subset of a ring ๐‘…

satisfying the following property:

O If ๐’‡, ๐’ˆ are in ๐‘ฐ, then ๐’‚๐’‡ + ๐’ƒ๐’ˆ is in ๐‘ฐ for any ๐’‚, ๐’ƒ in ๐‘น.

O That is, ๐ผ is closed under linear combinations with

coefficients in the ring.

O Closed under addition

O Closed under โ€œscalarโ€ multiplication

Examples of Ideals

O ๐‘… = โ„ค, ๐ผ = 5

= 5๐‘Ž โˆถ ๐‘Ž โˆˆ โ„ค

O ๐‘… = โ„ ๐‘ฅ, ๐‘ฆ , ๐ผ = ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ, 3๐‘ฅ + ๐‘ฆ

= ๐‘Ž ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ + ๐‘ 3๐‘ฅ + ๐‘ฆ โˆถ ๐‘Ž, ๐‘ โˆˆ ๐‘…

O ๐‘… = โ„ ๐‘ฅ, ๐‘ฆ , ๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5

= ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ๐‘ฆ3 + ๐‘๐‘ฆ5 โˆถ ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘…

O Each generator is a monomial, a single term

Rings mimic the Integers

O Prime factorization / Primary decomposition

O In โ„ค, factor 200

O In โ„ ๐‘ฅ, ๐‘ฆ , factor ๐‘ฅ4๐‘ฆ โˆ’ ๐‘ฅ3๐‘ฆ2

O What about 200 and ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 ?

O Modular arithmetic / Quotient rings

O โ„ค/(5) = ๐‘Ž + 5 โˆถ ๐‘Ž โˆˆ โ„ค

O โ„ ๐‘ฅ, ๐‘ฆ /(๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5) = ?

O Allows us to find the dimension or โ€œsizeโ€

Pictures!

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5

Dimension of ๐‘…/๐ผ?

Primary Decomposition

๐ผ = x4, x3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5

๐ผ = x4, x3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5

Primary Decomposition?

What if ๐‘… = โ„ ๐‘ฅ, ๐‘ฆ, ๐‘ง ?

Let ๐ผ = ๐‘ฅ3, ๐‘ฆ4, ๐‘ง2, ๐‘ฅ๐‘ฆ2๐‘ง .

O Diagram: think ๐‘…/๐ผ

O Dimension of ๐‘…/๐ผ?

O Primary Decomposition?

Colon Ideals

Let ๐ป and ๐ผ be ideals in a ring ๐‘…

with ๐ป contained in ๐ผ.

O Then ๐ป: ๐ผ = ๐‘Ž โˆˆ ๐‘… โˆถ ๐‘Ž๐ผ โŠ† ๐ป

O That is, ๐ป: ๐ผ is the set of

elements of the ring which

move all elements of ๐ผ into ๐ป.

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 ๐ป = ๐‘ฅ2, ๐‘ฆ5

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 ๐ป = ๐‘ฅ2, ๐‘ฆ5

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 ๐ป = ๐‘ฅ2, ๐‘ฆ5

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 ๐ป = ๐‘ฅ2, ๐‘ฆ5

๐ป: ๐ฝ = ๐‘ฅ, ๐‘ฆ2

๐ผ = ๐‘ฅ4, ๐‘ฅ3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5 ๐ป = ๐‘ฅ4, ๐‘ฆ5

๐ผ = ๐‘ฅ4, ๐‘ฅ3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5 ๐ป = ๐‘ฅ4, ๐‘ฆ5

๐ผ = ๐‘ฅ4, ๐‘ฅ3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5 ๐ป = ๐‘ฅ4, ๐‘ฆ5

Reductions of Ideals

O Reductions are simpler ideals

contained in a larger ideal with

similar properties.

O โ€œSimplerโ€ usually means fewer

generators.

O Most minimal reductions are not

monomial, but their intersection is.

The Core of an Ideal

O The core of an ideal ๐ผ is the

intersection of all reductions of ๐ผ.

O If ๐ผ is monomial, so is core ๐ผ .

O Cores have symmetry similar to

colon ideals.

๐ผ = ๐‘ฅ2, ๐‘ฅ๐‘ฆ3, ๐‘ฆ5 core ๐ผ

๐ผ = ๐‘ฅ4, ๐‘ฅ3๐‘ฆ2, ๐‘ฅ2๐‘ฆ4, ๐‘ฆ5 core(๐ผ)

๐ผ = ๐‘ฅ11, ๐‘ฅ9๐‘ฆ2, ๐‘ฅ6๐‘ฆ3, ๐‘ฅ5๐‘ฆ5, ๐‘ฅ4๐‘ฆ6, ๐‘ฅ2๐‘ฆ7, ๐‘ฅ๐‘ฆ9, ๐‘ฆ10

๐ผ = ๐‘ฅ11, ๐‘ฅ9๐‘ฆ2, ๐‘ฅ6๐‘ฆ3, ๐‘ฅ5๐‘ฆ5, ๐‘ฅ4๐‘ฆ6, ๐‘ฅ2๐‘ฆ7, ๐‘ฅ๐‘ฆ9, ๐‘ฆ10

๐ผ = ๐‘ฅ6, ๐‘ฆ4, ๐‘ง5, ๐‘ฅ2๐‘ฆ๐‘ง core ๐ผ

Why study monomial ideals?

O Can reduce more complicated ideals to

monomial ideals with similar properties

(Grรถbner basis theory).

O Monomial ideals can be studied with

combinatorial methods, not just algebraic.

O They are algorithmic, easy to program.

top related