particle technology, delftchemtech, julianalaan 136, 2628 bl delft stefan luding,...

Post on 27-Mar-2015

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft

Stefan Luding, s.luding@tnw.tudelft.nl

Shear banding in granular materials

Stefan LudingPART/DCT, TUDelft, NL

Thanks to:M. Lätzel, M.-K. Müller (Stuttgart),R. P. Behringer, J. Geng, D. Howell (Duke),M. van Hecke, D. Fenistein (Leiden)

• Introduction

• Results DEM

• Micro-Macro (global)

• Micro-Macro (local)

• Outlook

- Anisotropy

- Rotations

Single particle

Contacts

Many particle simulation

Continuum Theory

Contents

Single particle

Contacts

Many particle simulation

Continuum Theory

Contents E x p e r i m e

n t s

• Introduction

• Results DEM

• Micro-Macro (global)

• Micro-Macro (local)

• Outlook

- Anisotropy

- Rotations

Why ?

• `Many particle’ simulations workfor small systems only (104- 106)

• Industrial scale applications rely on FEM

• FEM relies on continuum mechanics+ constitutive relations

• `Micro-macro’ can provide those !• Homogenization/Averaging

• Introduction

• Results DEMContacts

Many particle simulation

Contents

Equations of motion2

2i

i i

d rmdt

f

Overlap 1

2 i j i jd d r r n

i j

ij

i j

r rn n

r r

c wii i ic w

f f f m g

Forces and torques:

i

i i

dIdt

t

44444444444444

c ci ici r ft 44444444444444

Normal

Contacts

Many particle simulation

Discrete particle model

0.0 0.2 0.4 0.6 0.80.0

0.1

0.2

0.3

0.4

0.5

Fig. 6

Nor

mal

ized

adh

esio

n fo

rce

(mN

/m)

Normalized load (mN/m)

Contact force measurement (PIA)

0( ) 1 cos2

ff

z zz t z t

Strain Control (top):

Initial position and final position z0 and zf

0

1zz

z

z

( ) ( ) ( )x xxx pm x t F t z t x Stress-control (right):

With wall mass: mx, friction x and (i) Bulk material force Fx(t)(ii) External force –pxz(t), and (iii) Frictional force xx(t)

Model system bi-axial box

zz=9.1%zz=4.2%zz=1.1%zz=0.0%

Simulation results

Bi-axial box

Bi-axial box

• Introduction

• Results DEM

• Micro-macro (global)

Contacts

Many particle simulation

Continuum Theory

Contents

Bi-axial compression with px=const.

2/ 0, 1/2, 1, 2, and 4ck k

geometrical friction angle

13

kc/k2

0½124

px

100100100100100

zz

183234264310336

px

500500500500500

zz

798853915941972

c1132406071

fmin

3 1 2

2

11.8 10

1 c

k k

kc

k

macro cohesion

Cohesion – no friction

kc = 0 and µ = 0.5

Internal friction angle 27

31 Total friction angle

Friction – no cohesion

Bi-axial box rotations

An-isotropy

Stiffness tensor

vertical

horizontal

shear

2

1

Cn c c c c

c

kaC n n n n

V

1122nC

11112222n n

D CC C

1111nC

2222nC

anisotropy

An-isotropy

• Structure changes with deformation• Different stiffness:

• More stiff against shear• Less stiff perpendicular

• Evolution with time:

maxD

DDDC C C

max1 exp

DD

D

C

C max . 0.34D conC st

,...f p

Stiffness tensor

vertical

vertical

horizontal

horizontalshear

shear1

shear2

shear3

Granular media are:- compressible- inhomogeneous (force-chains)- (almost always) an-isotropicand- micro-polar (rotations)

Summary – part 1: global view

• Introduction

• Results

• Micro-macro (global)

• Micro-macro (local)

Single particle

Contacts

Many particle simulation

Continuum Theory

Contents

Global average vs. Local average

• Global + Experimentally accessible data - Wall effects - Averaging over inhomogeneities

• Local - Difficult to compare to experiment + Averages away from the walls + Average over `similar’ volume elements

potential energy rotations displacements

Micro informations: shear bands

Direction, amplitude, anti-symmetric (!) stress

Rotations (local)

Ring geometry (Behringer et al.)

Ring geometry

2D shear cell – energy

2D shear cell – force chains

2D shear cell – shear band

Ring geometry

Ring geometry

Averaging Formalism

Any quantity:

In averaging volume:

1p p p pV

p V

Q Q w V QV

pQV

V

Averaging Formalism

Any quantity:

- Scalar- Vector- Tensor

1p p p pV

p V

Q Q w V QV

p c

c

Q Q

Averaging Density

1 p pV

p V

Q w VV

V1pQ

Any quantity:

- Scalar: Density/volume fraction

Density profile

Global volume fraction

Any quantity:

- Scalar- Vector – velocity density

Averaging Velocity

1 p pV

p V

pQ w VV

v v

VppQ v

pv

Velocity field

exponential

Velocity gradient

exponential: 0( ) exp( ( ) )iv r v r R s

1

2r

v vD

r r

v

width of shearband: 1...2s

d

Velocity distribution

Averaging Fabric

Any quantity:

- Scalar: contacts- Vector: normal- Contact distribution

pp pc pc

c

Q F n n

1 p p pc pcV

p V c

Q w VV

F n n

p

V

c

Fabric tensorcontact probability …

center wall

Fabric tensor (trace)

contact number density

Macro (contact density)

Fabric tensor (deviator)

an-isotropy (!)

Averaging Stress

Any quantity:

- Scalar- Vector- Tensor: Stress

1pp pc cp

c

QV

σ l f

1 p pc cV

p V c

Q wV

σ l f

p

V

cf

Stress tensor (static)

shear stress 2r

Stress tensor (dynamic)

exponential

Stress equilibrium (1)

( )1 ( ) 1 rrrr r

rre e

r r r r

( )( )und rrr

r

rr

r r

0 2( und )rr r rr r

( )ddt ta v v v v

20 ( )rrrra v r

r

0 ( )rr rr

r

acceleration:

Stress equilibrium (2)20 ( )rr

rra v rr

0 ( )rr rr

r

?

?

Averaging Deformations

Deformation:

- Scalar- Vector- Tensor: Deformation

1p pc cV

p V c

hQ w

V

Fl

p

V

2 minimal !c pcS l

Macro (bulk modulus) tr

trE

Macro (shear modulus) dev

devG

d

*

iv

12

*

bulk stiffness: tr : for

shear stiffness: else

deviator orientation: 1 0

ˆ

unit-deviator operator:

ˆ

ˆ0

D DV V

V V

V

V V V

F

T

G

G

E

E FF F F

σ 1 1

F

D D

RD 1

R

Constitutive model – no rotations

Averaging Rotations

Deformation:

- Scalar- Vector: Spin density- Tensor

p

V

cp pQ

1 p p pV

p V c

Q w VV

p

Rotations – spin density*

rW eigen-rotation:

Spin distribution

Velocity-spin distribution

high dens. low dens.

sim.sim.

exp. exp.

Macro (torque stiffness) 2 Ml

2l

Deformations (2D):

- Isotropic V - Deviatoric (=shear) D, - Mean rotation (=slip) * - Difference rot. (=rolling) **

Stress changes ???

- Isotropic V - Deviatoric D, - Asymmetric A

An-isotropy and rotations

o o*

*

* *1

45 90

* **

1 2 2* *

1 1 2 2

*

**

particle eigen-rotations: = sliding component: rolling component:

ˆ

with: sliding stiffnes

ˆ

s:

ˆDV D A

V

ci i

F F

i

SE F

aa a

RG

a

σ 1 σD D D

o 45 44

and rolling stiffness:

1 0unit-deviator operator:

0 1ˆ T

FF F

S R

R RD

Constitutive model with rotations

Granular media are:- compressible- inhomogeneous (force-chains)- (almost always) an-isotropic- micro-polar (rotations)

Summary

Granular media are …… interesting

Open issues

Accounting for inhomogeneities (temperature)

Structure evolution with deformation (time)

Micropolar continuum theory

The End

0.0 0.2 0.4 0.6 0.80.0

0.1

0.2

0.3

0.4

0.5

Fig. 6

Nor

mal

ized

adh

esio

n fo

rce

(mN

/m)

Normalized load (mN/m)

Contact force measurement (PIA)

0 50 100 150 200 250-5

0

5

10

15

20Polystryrene

Def

orm

atio

n H

yste

resi

s in

nm

Force in nN0 1000 2000 3000

-5

0

5

10

15

20

Borosilicate glass

Def

orm

atio

n H

yste

resi

s in

nm

Force in nN

Hysteresis (plastic deformation)

1

2 0

for loading

for un-/reloading

- for unloading

hysi

c

k

f k

k

max

0 1 2 max

2 1min max

2

min min

1 /

c

c

k k

k k

k k

f k

Maximum overlap

stress-free overlap

strong attraction

attractive for

est at:

the max. : ce

- (too) simple - piecewise linear- easy to implement

Contact model

1 for un-/re-loadinghysi

k

f

- (really too) simple - linear- very easy to implement

Linear Contact model

3/ 21 for un-/re-loading

hysi

k

f

- simple - non-linear- easy to implement

Hertz Contact model

Sound

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft

Stefan Luding, s.luding@tnw.tudelft.nl

Sound3-dimensional modeling of sound propagation

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft

Stefan Luding, s.luding@tnw.tudelft.nl

P-wave shape and speed

Sliding contact points:- Static Coulomb friction - Dynamic Coulomb friction

Tangential contact model

t

t rollin

torsion

ˆ

ˆ

s

ˆˆ

g

lidingi j

i j

i j

i j

i j

i j

i j n a a

n b b

n cn c

v v

v

- Static friction - Dynamic friction

project into tangential planecompute test force

sticking:sliding:

Tangential contact model

- spring- dashpot

ˆ ˆn n 0 0 0

t t t t tˆ and f ftk f

0t s nf f

0t s nf f dt 0

t tf f

dt n t̂f f t t tf k

before contact static dynamic static

Bi-axial box rotations

Direction, amplitude, anti-symmetric (!) stress

Rotations (local)

Rolling (mimic roughnessor steady contact necks)

- Static rolling resistance- Dynamic resistance

Tangential contact model

t

t rollin

torsion

ˆ

ˆ

s

ˆˆ

g

lidingi j

i j

i j

i j

i j

i j

i j n a a

n b b

n cn c

v v

v

Silo Flow with friction +rolling friction

0.5 0.5

0.2r

Silo Flow with friction 0.5

0.2r

t

t rollin

torsion

ˆ

ˆ

s

ˆˆ

g

lidingi j

i j

i j

i j

i j

i j

i j n a a

n b b

n cn c

v v

v

Tangential contact model

Torsion (large contact area)- Static torsion resistance- Dynamic resistance

+ successful tool – few parameters

- microscopic foundations ?

- extensions & parameter identification

Continuum Theory

deformation - rotations

0.5

0.6

0.7

0.8

0.9

1.0

-0.1 0 0.10.5

0.6

0.7

0.8

0.9

1.0

u/h

e

cyclic deformations - creep

Hypoplastic FEM model

density vs. pressure & friction vs. density

Micro-macro transition

From virtual work … For each single contact … Stress tensor Stiffness matrix C (elastic)

- Normal contacts- Tangential springs

Deformations (2D):- Isotropic compression V- Deviatoric strain (=shear) D,

Stress changes- Isotropic V- Deviatoric D,

Local micro-macro transition

page with logo

top related