p. lechner iworid 2002 peter lechner mpi halbleiterlabor & pnsensor gmbh 1 x-ray imaging...

Post on 03-Jan-2016

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

P. LechnerIWORID 2002

Peter Lechner

MPI Halbleiterlabor & PNSensor GmbH

1

X-ray imaging spectrometers in X-ray imaging spectrometers in present and future satellite missionspresent and future satellite missions

P. LechnerIWORID 2002

• MPI Semiconductor Lab

• X-ray Astronomy

• pnCCD XMM-Newton

• Framestore pnCCD ROSITA

• Active Pixel Sensor XEUS

• Conclusion

100 % personally biased

apologies!

1

X-ray imaging spectrometers in X-ray imaging spectrometers in present and future satellite missionspresent and future satellite missions

P. LechnerIWORID 2002

MPI semiconductor laboratory• common institution of the Max-Planck-Institutes for

Physics and for Extraterrestrial Physics

• founded in 1992

• 35 scientists, engineers, technicians, students

strip detectors for ALEPH/CERN

• development of novel detectors

high energy physics

ALEPH, ATLAS @ CERN

HERA-B, TESLA @ DESY

astrophysics

XMM-Newton, XEUS, ROSITA, MEGA, SVOM

related fieldssynchrotron radiation experiments

technology transferSilicon Drift Detectors for X-ray spectroscopy

industrial applications 2

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD camera for XMM-Newton

• development of novel detectors

high energy physics

ALEPH, ATLAS @ CERN

HERA-B, TESLA @ DESY

astrophysics

XMM-Newton, XEUS, ROSITA, MEGA, SVOM

related fieldssynchrotron radiation experiments

technology transferSilicon Drift Detectors for X-ray spectroscopy

industrial applications 2

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

MPI semiconductor laboratory• common institution of the Max-Planck-Institutes for

Physics and for Extraterrestrial Physics

• founded in 1992

• 35 scientists, engineers, technicians, students

P. LechnerIWORID 2002

Silicon Drift Detector Array for EXAFS, X-ray holography

• development of novel detectors

high energy physics

ALEPH, ATLAS @ CERN

HERA-B, TESLA @ DESY

astrophysics

XMM-Newton, XEUS, ROSITA, MEGA, SVOM

related fieldssynchrotron radiation experiments

technology transferSilicon Drift Detectors for X-ray spectroscopy

industrial applications 2

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

MPI semiconductor laboratory• common institution of the Max-Planck-Institutes for

Physics and for Extraterrestrial Physics

• founded in 1992

• 35 scientists, engineers, technicians, students

P. LechnerIWORID 2002

Silicon Drift Detector modules for X-ray fluorescence analysis

and electron microprobe analysis

• development of novel detectors

high energy physics

ALEPH, ATLAS @ CERN

HERA-B, TESLA @ DESY

astrophysics

XMM-Newton, XEUS, ROSITA, MEGA, SVOM

related fieldssynchrotron radiation experiments

technology transferSilicon Drift Detectors for X-ray spectroscopy

industrial applications

KETEK GmbH

2

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

MPI semiconductor laboratory• common institution of the Max-Planck-Institutes for

Physics and for Extraterrestrial Physics

• founded in 1992

• 35 scientists, engineers, technicians, students

P. LechnerIWORID 2002

MPI semiconductor laboratory

... with modern, custom made facilities ...... for a full 6-inch silicon process line 800 m² cleanroom up to class 1 ...

mounting & bonding test & qualification simulation, layout & data analysis

3

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

X-ray astronomy

4

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

access to hot matter and energetic processes

supernovae

X-ray bursters

neutron stars

X-ray binaries

pulsars

black holes

quasars

P. LechnerIWORID 2002

X-ray astronomy - instrumentation

5

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

telescope

• collimator, coded mask

• mirror telescope ´Wolter-I´

grazing angle reflection

• (microchannel plate)

XMM mirrors

P. LechnerIWORID 2002

X-ray astronomy - instrumentation

5

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

telescope

• collimator, coded mask

• mirror telescope ´Wolter-I´

grazing angle reflection

• (microchannel plate)

focal plane

• proportional counter

• CCD

ASCA, Chandra, XMM-Newton

• APS

XEUS

• (high-Z semiconductors, cryogenic detectors)

XMM-Newton

Chandra

P. LechnerIWORID 2002

pnCCD principle

MOS-CCD (´video CCD´)

• MOS transfer gates

• buried channel

• partial depletion

• frontside illumination

• serial readout

6

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD principle

MOS-CCD (´video CCD´)

• MOS transfer gates

implanted pn-junctions

• buried channel

deep transfer

• partial depletion

full depletion

• frontside illumination

back entrance window

• serial readout

1 preamp / channel

pnCCD6

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD performance

• largest monolithic CCD

6 x 6 cm²

384 x 400 pixel

150 µm pixel

• fast readout

5 msec full frame

• low noise

4 el. rms

• high quantum efficiency

90 %

• radiation hard

400 Mp/cm²

7

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD performance

7

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• largest monolithic CCD

6 x 6 cm²

384 x 400 pixel

150 µm pixel

• fast readout

5 msec full frame

• low noise

4 el. rms

• high quantum efficiency

90 %

• radiation hard

400 Mp/cm²

P. LechnerIWORID 2002

pnCCD performance

7

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• largest monolithic CCD

6 x 6 cm²

384 x 400 pixel

150 µm pixel

• fast readout

5 msec full frame

• low noise

4 el. rms

• high quantum efficiency

90 %

• radiation hard

400 Mp/cm²

P. LechnerIWORID 2002

pnCCD performance

7

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• largest monolithic CCD

6 x 6 cm²

384 x 400 pixel

150 µm pixel

• fast readout

5 msec full frame

• low noise

4 el. rms

• high quantum efficiency

90 %

• radiation hard

400 Mp/cm²

P. LechnerIWORID 2002

pnCCD vs. MOS-CCDs

typereadout

time[msec]

pixel cell size[µm²]

detector size[cm²]

MIT/LL-FI 60 130 3 20 500 24 x 24 2.5 x 2.5MIT/LL-BI 125 200 50 10 500 24 x 24 2.5 x 2.5

Leicester 80 130 25 30 500 40 x 40 2.4 x 2.4SRON 100 145 65 15 500 27 x 27 2.8 x 2.8

pnCCD 70 130 90 90 4,6 150 x150 6 x 6

XMM

energy resolution@ 272 eV & 5.9 keV

FWHM [eV]

quantum efficiency@ 272 eV & 10 keV

[%]

CHANDRA(original)

backside illumination

full depletion

large pixels, parallel readout

8

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

XMM-Newton – the satellite

• 3 imagers

2 MOS-CCD + RGS

1 pnCCD

pointing at one source

• energy range

0.1 ... 15 keV

• Wolter-I telescopes

58 nested mirror shells

eff. area 0,5 m² (1 keV)

focal length 7,5 m

FOV 30 arcmin

resolution 15 arcsec

• highly excentric orbit

48 h

perigee: 7.000 km

apogee: 114.000 km

9

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

XMM-Newton – integration & launch

10

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• mounting of pnCCD camera

• satellite integration

• mirror system

P. LechnerIWORID 2002

10

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• launch by ARIANE-V from Kourou

10–Dec–1999

• XMM-Newton in orbit

XMM-Newton – integration & launch

P. LechnerIWORID 2002

XMM-Newton – first light

large Magellanic cloud

supernova remnant

1987A

11

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

XMM-Newton - observations

remnant of supernova

observed by Tycho Brahe

in 1572

energy [keV]

rela

tive

inte

nsity

element distribution

12

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

XMM-Newton - observations

Lockman hole:

a look into deep space

first observation of

´green´ and ´blue´

hard x-ray sources

no diffuse background?

12

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD – performance in space

• perfect imaging since launch

• 500 revolutions

> 1000 observations

• no significant change of

energy resolution and

charge transfer efficiency

• few pixels lost in rev. 156

impact of micro-meteorite?

• effect reproduced on ground

using a dust accelerator 13

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

pnCCD - limitation

charge transfer speed limited

by the time needed for readout

´out of time´ events

pnCCD: ~ 6 %

14

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

framestore pnCCD

• frame store area

separation transfer / readout

reduction of out-of-time events

6 % (XMM) 0.4 %

• prototypes under test

smaller pixels (75 µm)

improved performance

15

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

ROSITA - ROROentgen SSurvey with an IImaging TTelescope AArray

point sources

diffuse background

16

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

XEUS – X-ray Evolving Universe Spectroscopy

17

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• X-ray telescope with large aperture

energy range 100 eV ... 30 keV

• scientific aim:

investigation of the universe

at an early evolution stage

• two spacecrafts

- mirror spacecraft

Wolter-I telescope

effective area: 6 m² (30 m²) @ 1keV

- detector spacecraft

• focal plane instrumentation

- 2 narrow field imagers

- 1 wide field imager

P. LechnerIWORID 2002

XEUS WFI vs. XMM-Newton

XMMXMM XEUS WFIXEUS WFI

energy range 0.1 ... 15 keV 0.1 ... 20 keV thickness 300 µm 500 µm

focal length 7.5 m 50 m

angular resolution 15 arcsec 2 arcsec

focal plane res. 36 µm / arcsec 250 µm / arcsec pixel size 150 µm 75 µm

field of view 30 arcmin 5 arcmin detector area 6 x 6 cm² 7.6 x 7.6 cm²

collection area 1keV 0.5 m² 6 m² (30 m²) readout speed

time resolution 70 msec 1 ... 5 msec readout speed

operating temp. 130 K > 180 K

Active Pixel Sensor

1 integrated preamp / pixel

random accessible pixels

no charge transfer within

silicon18

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

DEPFET – DEDEpleted PP-channel FField EEffect TTransistor

19

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

• p-FET (JFET or MOSFET) on depleted n-Si bulk

• local potential minimum for electrons ‘internal gate‘

• current change prop. to number of charges in the ‘internal gate‘I > 200 pA / electron

• nondestructive readout

• charge integration and storagein ON and OFF state

• reset through clear contact, supported by clear gate

• backside illuminated

P. LechnerIWORID 2002

DEPFET – simulation

20

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

DEPFET – active pixel sensor

21

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

DEPFET – active pixel sensor

22

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

DEPFET – active pixel sensor

BioScope for autoradiography (University Bonn)

23

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

DEPFET – status

• test of isolated pixel

JFET-based DEPFET

L = 5 µm, W = 50 µm

time-continuous filter

______________________

• production of APS

prototypes 64 x 64

• new readout chip

under test

• new control chip

submitted24

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

P. LechnerIWORID 2002

Conclusion

25

MPI laboratory

X-ray astronomy

pnCCD

framestore pnCCD

active pixel sensor

conclusion

X-ray astronomy

driving force in semiconductor detector development

novel detectors

new view to the X-ray sky

... no end in sight ...

P. LechnerIWORID 2002

ThanksL. Andricek, D. Hauff, P. Klein*, G.Lutz, R.H. Richter, M. Schnecke, P. Solc*

Max-Planck-Institut für Physik, Munich, Germany

H. Bräuninger, S. Bonerz, U. Briel, K. Dennerl, J. Englhauser, G. Hartner, G. Hasinger, T. Johannes*, S. Kemmer*, J. Kollmer,

N. Krause*, N. Meidinger, E. Pfeffermann, E. Ruttkowski, G. Schaller, F. Schopper, D. Stötter*, L. Strüder, J. Treis, J. Trümper

Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

R. Eckard, R. Hartmann, K. Heinzinger, P. Holl, P. Lechner, H. Soltau, U. Weichert

PNSensor GmbH, Munich, Germany

N. Findeis*, J. Kemmer, S. Krisch*, R. Stötter, U. Weber*

KETEK GmbH, Munich, Germany

E. Kendziorra, K. Kramer, R. Staubert

Astronomisches Institut Tübingen, Tübingen, Germany

P. Fischer, W. Neeser*, I. Peric, M. Trimpl, J. Ulrici, N. Wermes

University of Bonn, Bonn, Germany

W. Buttler

Ingenieurbüro Buttler, Essen, Germany

E. Gatti, A. Longoni, M. Sampietro

Politecnico di Milano, Milan, Italy

P. Rehak

Brookhaven National Laboratory, Upton, NY, USA

26

top related