optimization of composite structures by estimation of ...leriche/defense_anim.pdf · optimization...

Post on 12-Sep-2018

224 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Optimization of Composite Structuresby Estimation of Distribution Algorithms

Paris Research Center, October 5, 2004Laurent Grossetgrosset@emse.fr

Advisors:

Raphael T. Haftka, Department of Mechanical and Aerospace En-gineering, University of Florida

Rodolphe Le Riche, Département Mécanique et Matériaux, ÉcoleNationale Supérieure des Mines de Saint-Étienne

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 1/50

OutlineRésumé des travaux (en français)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)Principles

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)PrinciplesImportance of the statistical model

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)PrinciplesImportance of the statistical model

Application of a simple EDA to laminate optimization

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)PrinciplesImportance of the statistical model

Application of a simple EDA to laminate optimization

Introduction of variable dependencies through auxiliary variables andthe Double-Distribution Optimization Algorithm

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

OutlineRésumé des travaux (en français)

Introduction to composite laminate optimization

Introduction to Estimation of Distribution Algorithms (EDA)PrinciplesImportance of the statistical model

Application of a simple EDA to laminate optimization

Introduction of variable dependencies through auxiliary variables andthe Double-Distribution Optimization Algorithm

Conclusions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 2/50

Résumé des Travaux

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 3/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

La réponse dépend de l’orientation des fibres

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

La réponse dépend de l’orientation des fibres

But de l’optimisation = déterminer l’orientation optimale de toutes lescouches pour une application particulière :

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

La réponse dépend de l’orientation des fibres

But de l’optimisation = déterminer l’orientation optimale de toutes lescouches pour une application particulière :

maximiser la résistance d’un élément de structure d’un avion

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

La réponse dépend de l’orientation des fibres

But de l’optimisation = déterminer l’orientation optimale de toutes lescouches pour une application particulière :

maximiser la résistance d’un élément de structure d’un avionminimiser le poids

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

Problématique:Optimisation de stratifiés composites

Stratifié composite : empilement de couchesde renforts (fibres) noyées dans la résine(polymère)

Exemples : aéronautique (ex. Boeing 7E7),construction navale, équipements sportifs,. . .

La réponse dépend de l’orientation des fibres

But de l’optimisation = déterminer l’orientation optimale de toutes lescouches pour une application particulière :

maximiser la résistance d’un élément de structure d’un avionminimiser le poidsdéterminer la séquence d’empilement de la coque d’une voiturede course de manière à minimiser les vibrations

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 4/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimisation stochastique pour globalité (algorithmes génétiques,années 90)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimisation stochastique pour globalité (algorithmes génétiques,années 90)

La thèse fait suite à des travaux du groupe de Prof. Haftka:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimisation stochastique pour globalité (algorithmes génétiques,années 90)

La thèse fait suite à des travaux du groupe de Prof. Haftka:R. Le Riche : application d’algorithmes évolutionnaires àl’optimisation de structures composites (1994)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimisation stochastique pour globalité (algorithmes génétiques,années 90)

La thèse fait suite à des travaux du groupe de Prof. Haftka:R. Le Riche : application d’algorithmes évolutionnaires àl’optimisation de structures composites (1994)B. Liu: optimisation globale de structures composites paralgorithmes multi-niveaux (2001)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

État de l’art, objectifs de la thèse

Méthodes traditionnelles basées sur les gradients mais problèmescontinus uniquement et recherche locale

Optimisation stochastique pour globalité (algorithmes génétiques,années 90)

La thèse fait suite à des travaux du groupe de Prof. Haftka:R. Le Riche : application d’algorithmes évolutionnaires àl’optimisation de structures composites (1994)B. Liu: optimisation globale de structures composites paralgorithmes multi-niveaux (2001)

Objectifs de la thèse :

Maturation des méthodes évolutionnaires depuis 20 ans (ES, EDA)

Transférer ces nouvelles méthodes à l’optimisation de composites :utilisation plus simpleméthodes plus efficaces

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 5/50

Algorithmes à estimation de distribution

x*

F(x)

x

optimum

x*

F(x)

x

optimum

But : trouver le point de plus élevéd’une “fonction coût” F sur undomaine D

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 6/50

Algorithmes à estimation de distribution

x*

F(x)

x

optimum

x*

F(x)

x

optimum

But : trouver le point de plus élevéd’une “fonction coût” F sur undomaine D

Difficulté : on ne dispose que d’unbudget limité de N évaluations de lafonction F (on ne peut pas calculertoutes les combinaisons pour choisirla meilleure!)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 6/50

Algorithmes à estimation de distribution

x*

F(x)

x

optimum

x*

F(x)

x

optimum

But : trouver le point de plus élevéd’une “fonction coût” F sur undomaine D

Difficulté : on ne dispose que d’unbudget limité de N évaluations de lafonction F (on ne peut pas calculertoutes les combinaisons pour choisirla meilleure!)

On représente notre croyance quel’optimum est dans une région deD par une densité de probabilitép(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 6/50

Algorithmes à estimation de distribution

x*

F(x)

x

optimum

x*

F(x)

x

optimum

But : trouver le point de plus élevéd’une “fonction coût” F sur undomaine D

Difficulté : on ne dispose que d’unbudget limité de N évaluations de lafonction F (on ne peut pas calculertoutes les combinaisons pour choisirla meilleure!)

On représente notre croyance quel’optimum est dans une région deD par une densité de probabilitép(x)

p(x) est utilisée pour créer denouveaux points

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 6/50

Algorithmes à estimation de distribution

x*

F(x)

x

optimum

x*

F(x)

x

optimum

But : trouver le point de plus élevéd’une “fonction coût” F sur undomaine D

Difficulté : on ne dispose que d’unbudget limité de N évaluations de lafonction F (on ne peut pas calculertoutes les combinaisons pour choisirla meilleure!)

On représente notre croyance quel’optimum est dans une région deD par une densité de probabilitép(x)

p(x) est utilisée pour créer denouveaux pointsles nouveaux points sont utiliséspour mettre à jour p(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 6/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Amélioration du modèle statistique par injection de connaissance surla structure du problème

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Amélioration du modèle statistique par injection de connaissance surla structure du problème

Mécanismes de contrôle de l’exploration

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Amélioration du modèle statistique par injection de connaissance surla structure du problème

Mécanismes de contrôle de l’exploration

Résultats

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Amélioration du modèle statistique par injection de connaissance surla structure du problème

Mécanismes de contrôle de l’exploration

Résultats

Les EDAs sont facilement applicables à l’optimisation de stratifiés

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Enjeux, améliorations proposées et résultats

Éléments critiques de l’algorithme

Adaptation aux problèmes de composites (alphabet non binaire,nombre de variables réduit, évaluations coûteuses)

Représentation de la distribution p(x) : mauvais choix de la forme dep(x) ➫ gaspillage d’évaluations dans des régions médiocres

Solutions proposées

Amélioration du modèle statistique par injection de connaissance surla structure du problème

Mécanismes de contrôle de l’exploration

Résultats

Les EDAs sont facilement applicables à l’optimisation de stratifiés

La stratégie proposée conduit à une amélioration de l’efficacité surles problèmes testés

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 7/50

Introduction to Composite LaminateOptimization

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 8/50

Composite Laminates

Composite laminate: structure made of layers(plies) of fibrous material embedded in amatrix

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 9/50

Composite Laminates

Composite laminate: structure made of layers(plies) of fibrous material embedded in a matrix

The fibers (graphite, glass,. . . ) provide themechanical properties, the matrix (polymer)hold the fibers together

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 9/50

Composite Laminates

Composite laminate: structure made of layers(plies) of fibrous material embedded in a matrix

The fibers (graphite, glass,. . . ) provide themechanical properties, the matrix (polymer)hold the fibers together

Applications:aerospace industry (rudder, wing box,flying control surfaces, helicopterblades,. . . )sporting goods (skis, sailing, tennis)wind turbinesmotorsports and performance cars

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 9/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Goal of the optimization: maximize F

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Goal of the optimization: maximize F

Difficulty:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Goal of the optimization: maximize F

Difficulty:θk discrete (e.g. θk ∈ {0◦, 45◦, 90◦}) ➫ combinatorial problems

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Goal of the optimization: maximize F

Difficulty:θk discrete (e.g. θk ∈ {0◦, 45◦, 90◦}) ➫ combinatorial problemsF non-convex in general ➫ many local optima

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Optimization of Composite Laminates

Each layer is orthotropic: its mechanical properties depend on thedirection

Overall response F (stiffness, strength, natural frequency, bucklingload,. . . ) of the whole laminate depends on the stacking sequence[θ1, θ2, . . . , θn]:

F = F (θ1, θ2, . . . , θn)

Goal of the optimization: maximize F

Difficulty:θk discrete (e.g. θk ∈ {0◦, 45◦, 90◦}) ➫ combinatorial problemsF non-convex in general ➫ many local optima

➫ Require specific optimization methods

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 10/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

➫ can use well-established methods, but no guaranty to find the globaloptimum

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

➫ can use well-established methods, but no guaranty to find the globaloptimum

Stochastic optimization: Genetic Algorithms (Hajela and Lin, 1992;Le Riche and Haftka, 1993)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

➫ can use well-established methods, but no guaranty to find the globaloptimum

Stochastic optimization: Genetic Algorithms (Hajela and Lin, 1992;Le Riche and Haftka, 1993)

➫ stochastic search + discrete variables: can solve the problem directly,but

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

➫ can use well-established methods, but no guaranty to find the globaloptimum

Stochastic optimization: Genetic Algorithms (Hajela and Lin, 1992;Le Riche and Haftka, 1993)

➫ stochastic search + discrete variables: can solve the problem directly,but

can be difficult to use (many problem-dependent parameters totune),

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Laminate Optimization Methods

Gradient-based continuous optimization using ply thicknesses asdesign variables (Schmit and Farshi, 1977) or a penalty approach toforce discreteness of the ply angles (Shin et al., 1990)

➫ can use well-established methods, but no guaranty to find the globaloptimum

Stochastic optimization: Genetic Algorithms (Hajela and Lin, 1992;Le Riche and Haftka, 1993)

➫ stochastic search + discrete variables: can solve the problem directly,but

can be difficult to use (many problem-dependent parameters totune),and computationally expensive

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 11/50

Purpose of this work

Our goal is to

1. investigate the application of a new class of algorithms called“Estimation of Distribution Algorithms” (EDAs) to the field of laminateoptimization;

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 12/50

Purpose of this work

Our goal is to

1. investigate the application of a new class of algorithms called“Estimation of Distribution Algorithms” (EDAs) to the field of laminateoptimization;

2. propose improvements to EDAs in the context of laminateoptimization:use physics-based knowledge to improve efficiency

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 12/50

Purpose of this work

Our goal is to

1. investigate the application of a new class of algorithms called“Estimation of Distribution Algorithms” (EDAs) to the field of laminateoptimization;

2. propose improvements to EDAs in the context of laminateoptimization:use physics-based knowledge to improve efficiency

3. study the general behavior of EDAs and propose improvements toEDAs that can be used for other fields.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 12/50

Introduction to Estimation of DistributionAlgorithms

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 13/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Application to function optimization:Idea: let a population of candidate solutions evolve to adapt to a taskto perform

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Application to function optimization:Idea: let a population of candidate solutions evolve to adapt to a taskto perform

Environment → Function F (x) to maximize (“fitness”)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Application to function optimization:Idea: let a population of candidate solutions evolve to adapt to a taskto perform

Environment → Function F (x) to maximize (“fitness”)Population of individuals → population of points xi, i = 1, . . . , λ

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Application to function optimization:Idea: let a population of candidate solutions evolve to adapt to a taskto perform

Environment → Function F (x) to maximize (“fitness”)Population of individuals → population of points xi, i = 1, . . . , λ

Natural selection → Selection based on F

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

Recall: Genetic Algorithms (GA)

Inspiration: Darwin’s theory of Evolution (“survival of the fittest”)

A species can adapt to an environment becausethose individuals that possess features that give them acompetitive advantage over other individuals are more likelyto have offspring, and therefore to pass on theiradvantageous traits to the next generation.

Application to function optimization:Idea: let a population of candidate solutions evolve to adapt to a taskto perform

Environment → Function F (x) to maximize (“fitness”)Population of individuals → population of points xi, i = 1, . . . , λ

Natural selection → Selection based on F

Reproduction → recombination (crossover) and perturbation(mutation) operators

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 14/50

GA Mechanism

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniform

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 15/50

GA Mechanism

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniform

Points obtained byselection ➫ parents

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 15/50

GA Mechanism

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniform

Points obtained byselection ➫ parents

Creation of new points byrecombination(e.g. weighted average inR

n) ➫ children

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 15/50

GA Mechanism

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniform

Points obtained byselection ➫ parents

Creation of new points byrecombination(e.g. weighted average inR

n) ➫ children

Resulting new population

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 15/50

GA Mechanism

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

20

30

40

50

60

70

F(x

)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

p(x)

Implicit pdf of children

Initial population: uniform

Points obtained byselection ➫ parents

Creation of new points byrecombination(e.g. weighted average inR

n) ➫ children

Resulting new population

fitness function F

+ selection procedure+ variation operators

implicitprobability distribution p(x)

over the design space

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 15/50

Formalization of GAs ➫ Estimation of Distri-bution Algorithms

Goal: control the way the search distribution p(x) is constructed sothat it learns information about “promising regions”

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 16/50

Formalization of GAs ➫ Estimation of Distri-bution Algorithms

Goal: control the way the search distribution p(x) is constructed sothat it learns information about “promising regions”

Principle: express explicitly p(x) and use it to create new pointsin high-fitness areas

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 16/50

Formalization of GAs ➫ Estimation of Distri-bution Algorithms

Goal: control the way the search distribution p(x) is constructed sothat it learns information about “promising regions”

Principle: express explicitly p(x) and use it to create new pointsin high-fitness areas

Potential advantages:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 16/50

Formalization of GAs ➫ Estimation of Distri-bution Algorithms

Goal: control the way the search distribution p(x) is constructed sothat it learns information about “promising regions”

Principle: express explicitly p(x) and use it to create new pointsin high-fitness areas

Potential advantages:Better understanding of the algorithm (based on statisticalprinciples, not nature imitation)➫ improve efficiency

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 16/50

Formalization of GAs ➫ Estimation of Distri-bution Algorithms

Goal: control the way the search distribution p(x) is constructed sothat it learns information about “promising regions”

Principle: express explicitly p(x) and use it to create new pointsin high-fitness areas

Potential advantages:Better understanding of the algorithm (based on statisticalprinciples, not nature imitation)➫ improve efficiencyPotentially fewer parameters (avoid many ad hoc operators)➫ algorithm easier to use

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 16/50

The Estimation of Distribution Algorithm(EDA)

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 17/50

The Estimation of Distribution Algorithm(EDA)

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

1. Use created points to inferstatistical information aboutgood regions ➫ p(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 17/50

The Estimation of Distribution Algorithm(EDA)

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

Initialize P(x)

Create l points

by sampling from P(x)

Select m good points

based on the fitness F

Estimate the distribution

P(x) of the selected points

1. Use created points to inferstatistical information aboutgood regions ➫ p(x)

2. Use p(x) to create new pointsin promising regions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 17/50

Estimation of Distribution Algorithm: Illustra-tion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniformp(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 18/50

Estimation of Distribution Algorithm: Illustra-tion

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniformp(x)

Points obtained byselection

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 18/50

Estimation of Distribution Algorithm: Illustra-tion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

F(x

)

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p(x)

Gaussian kernels

Initial population: uniformp(x)

Points obtained byselection

Estimation of thedistribution of good pointsp(x)(continuous case, kernels,p(x) =const

N

∑Ni=1 exp(− (x−xi)

2

2σ2 ))

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 18/50

Estimation of Distribution Algorithm: Illustra-tion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

F(x

)

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p(x)

Initial population: uniformp(x)

Points obtained byselection

Estimation of thedistribution of good pointsp(x)(continuous case, kernels,p(x) =const

N

∑Ni=1 exp(− (x−xi)

2

2σ2 ))

Estimated distribution ofgood points p(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 18/50

Estimation of Distribution Algorithm: Illustra-tion

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

F(x

)

x

Initial population: uniformp(x)

Points obtained byselection

Estimation of thedistribution of good pointsp(x)(continuous case, kernels,p(x) =const

N

∑Ni=1 exp(− (x−xi)

2

2σ2 ))

Estimated distribution ofgood points p(x)

New population obtainedby sampling from p(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 18/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:1. choose a model p̂(x; m1, . . . , mr),

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:1. choose a model p̂(x; m1, . . . , mr),2. find the value of the model parameters mj that maximizes the

likelihood of the good observed points.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:1. choose a model p̂(x; m1, . . . , mr),2. find the value of the model parameters mj that maximizes the

likelihood of the good observed points.

The choice of the model is a compromise between

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:1. choose a model p̂(x; m1, . . . , mr),2. find the value of the model parameters mj that maximizes the

likelihood of the good observed points.

The choice of the model is a compromise between1. the exploitation or accuracy of p, i.e. its ability to learn the

distribution of selected points, and

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Estimating the distribution of good points

Task: given a sample of µ selected points, infer distribution p(x) of allthe points of comparable fitness (“promising regions”)

Procedure:1. choose a model p̂(x; m1, . . . , mr),2. find the value of the model parameters mj that maximizes the

likelihood of the good observed points.

The choice of the model is a compromise between1. the exploitation or accuracy of p, i.e. its ability to learn the

distribution of selected points, and2. the generalization stability of p in unvisited regions, in particular

its ability to explore them.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 19/50

Application of a Simple EDA to LaminateOptimization

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 20/50

Simple Model: Independent Variables

General principle in machine learning: in the absence of informationabout the distribution, use simple models (cf. “Occam’s razor”)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 21/50

Simple Model: Independent Variables

General principle in machine learning: in the absence of informationabout the distribution, use simple models (cf. “Occam’s razor”)

Simplest statistical model of selected points: independent variables:

p(x1, x2, . . . , xn) =

n∏

k=1

p(xk)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 21/50

Simple Model: Independent Variables

General principle in machine learning: in the absence of informationabout the distribution, use simple models (cf. “Occam’s razor”)

Simplest statistical model of selected points: independent variables:

p(x1, x2, . . . , xn) =

n∏

k=1

p(xk)

Only the marginal distributions of the variables appear in the model:discrete case = frequency of all possible values of each variable

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 21/50

Simple Model: Independent Variables

General principle in machine learning: in the absence of informationabout the distribution, use simple models (cf. “Occam’s razor”)

Simplest statistical model of selected points: independent variables:

p(x1, x2, . . . , xn) =

n∏

k=1

p(xk)

Only the marginal distributions of the variables appear in the model:discrete case = frequency of all possible values of each variable

Proposed by S. Baluja (PBIL, 1994) and H. Mühlenbein (1996) in theUnivariate Marginal Distribution Algorithm (UMDA)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 21/50

Simple Model: Independent Variables

General principle in machine learning: in the absence of informationabout the distribution, use simple models (cf. “Occam’s razor”)

Simplest statistical model of selected points: independent variables:

p(x1, x2, . . . , xn) =

n∏

k=1

p(xk)

Only the marginal distributions of the variables appear in the model:discrete case = frequency of all possible values of each variable

Proposed by S. Baluja (PBIL, 1994) and H. Mühlenbein (1996) in theUnivariate Marginal Distribution Algorithm (UMDA)

Changes: non-binary alphabet, mutation to compensate forestimation error

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 21/50

Application to Laminates: Frequency problem

Constrained maximization of the first natural frequency of asimply-supported rectangular laminated plate:

maximize f1(θ1, . . . , θ15)

such that νl ≤ νeff ≤ νu

Poisson’s ratio = deformation observed in thetransverse direction when a unit deformation isapplied in the longitudinal direction

L

W

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 22/50

Application to Laminates: Frequency problem

Constrained maximization of the first natural frequency of asimply-supported rectangular laminated plate:

maximize f1(θ1, . . . , θ15)

such that νl ≤ νeff ≤ νu

Poisson’s ratio = deformation observed in thetransverse direction when a unit deformation isapplied in the longitudinal direction

L

W

θk ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 22/50

Application to Laminates: Frequency problem

Constrained maximization of the first natural frequency of asimply-supported rectangular laminated plate:

maximize f1(θ1, . . . , θ15)

such that νl ≤ νeff ≤ νu

Poisson’s ratio = deformation observed in thetransverse direction when a unit deformation isapplied in the longitudinal direction

L

W

θk ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

The constraints are enforced througha penalty approach

020

4060

80100

0

20

40

60

80

100−2000

−1000

0

1000

x1

x2

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 22/50

Application to Laminates: Frequency problem

Constrained maximization of the first natural frequency of asimply-supported rectangular laminated plate:

maximize f1(θ1, . . . , θ15)

such that νl ≤ νeff ≤ νu

Poisson’s ratio = deformation observed in thetransverse direction when a unit deformation isapplied in the longitudinal direction

L

W

θk ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

The constraints are enforced througha penalty approach

The constraints create a narrow ridgein the design space

020

4060

80100

0

20

40

60

80

100−2000

−1000

0

1000

x1

x2

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 22/50

Results: reliability of the optimization

Optimum:[904/ ± 75/ ± 602/ ± 455/ ± 305]s

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 23/50

Results: reliability of the optimization

Optimum:[904/ ± 75/ ± 602/ ± 455/ ± 305]s

Compare UMDA to a GAand a hill-climbing algorithm(SHC)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 23/50

Results: reliability of the optimization

Optimum:[904/ ± 75/ ± 602/ ± 455/ ± 305]s

Compare UMDA to a GAand a hill-climbing algorithm(SHC)

UMDA and SHC: optimizedparameters, GA: same set-ting as UMDA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 23/50

Results: reliability of the optimization

Optimum:[904/ ± 75/ ± 602/ ± 455/ ± 305]s

Compare UMDA to a GAand a hill-climbing algorithm(SHC)

UMDA and SHC: optimizedparameters, GA: same set-ting as UMDA

Reliability R: probability of finding the optimum ina given number of function evaluations. 0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

relia

bilit

y

SHCUMDAGA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 23/50

Results: reliability of the optimization

Optimum:[904/ ± 75/ ± 602/ ± 455/ ± 305]s

Compare UMDA to a GAand a hill-climbing algorithm(SHC)

UMDA and SHC: optimizedparameters, GA: same set-ting as UMDA

Reliability R: probability of finding the optimum ina given number of function evaluations. 0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

relia

bilit

y

SHCUMDAGA

➫ UMDA outperforms SHC because its distribution approach (global)allows it to handle narrow search spaces

➫ the performance of UMDA is substantially higher than that of GA forthis problem

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 23/50

Improvement of the Statistical Model ofSelected Points through Auxiliary Variables:

the Double-Distribution Optimization Algorithm

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 24/50

Limitations of simple models

Usual assumption: independent variables

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 25/50

Limitations of simple models

Usual assumption: independent variables

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

Problem: does not work for problems with strong variable interactions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 25/50

Limitations of simple models

Usual assumption: independent variables

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

Problem: does not work for problems with strong variable interactions

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 25/50

Limitations of simple models

Usual assumption: independent variables

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

Problem: does not work for problems with strong variable interactions

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

MAXIMUMPROBABILITY

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 25/50

Limitations of simple models

Usual assumption: independent variables

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

Problem: does not work for problems with strong variable interactions

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

MAXIMUMPROBABILITY

High-probability areas do not coincide with high-fitness regions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 25/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

X1

X3

X4 X5

X6

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

X1

X3

X4 X5

X6

X1 X2

X3 X4

X5

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

X1

X3

X4 X5

X6

X1 X2

X3 X4

X5

Disadvantages:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

X1

X3

X4 X5

X6

X1 X2

X3 X4

X5

Disadvantages:The number of parameters mj to estimate increases rapidly withthe model complexity

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of variable dependencies

Complex statistical models have been tried: chain models, treemodels, full Bayesian networks (Pelikan, 1999)

X1 X2 X3

X1

X3

X4 X5

X6

X1 X2

X3 X4

X5

Disadvantages:The number of parameters mj to estimate increases rapidly withthe model complexity

➫ the population size needed to estimate these parameters ensure(with a constant confidence) increases with the model complexitybecause flexible models do not generalize well the informationcontained in the sample to other regions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 26/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Examples :

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Examples :the dimensions of a beam determine its flexural behavior throughthe moment of inertia I,

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Examples :the dimensions of a beam determine its flexural behavior throughthe moment of inertia I,the geometry of a vehicle influences its aerodynamic behavior viathe drag coefficient CV ,

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Examples :the dimensions of a beam determine its flexural behavior throughthe moment of inertia I,the geometry of a vehicle influences its aerodynamic behavior viathe drag coefficient CV ,the locations of the holes/particles in a porous media affect theflow through the permeability.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Representation of joint actions of the vari-ables via auxiliary variables

Observation : in many situations, a small number of high ordervariables V = (V1, V2, . . . , Vm) partially determine the objectivefunction

Examples :the dimensions of a beam determine its flexural behavior throughthe moment of inertia I,the geometry of a vehicle influences its aerodynamic behavior viathe drag coefficient CV ,the locations of the holes/particles in a porous media affect theflow through the permeability.

These meaningful quantities V reflect joint actions of the variables x

and can be used as auxiliary variables to capture such interactions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 27/50

Algorithm Principle

The distribution p(x) is represented by a simple model (UMDA)

A simple distribution f(V) is used to introduce variable dependencies

x V

f(V)

V(x1, x2, . . . , xn)

p(x1), p(x2), . . . , p(xn)

Two simple models ⇒ Complex model

f(V)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 28/50

Algorithm Principle

The distribution p(x) is represented by a simple model (UMDA)

A simple distribution f(V) is used to introduce variable dependencies

x V

f(V)

V(x1, x2, . . . , xn)

p(x1), p(x2), . . . , p(xn)

Two simple models ⇒ Complex model

f(V)

Required attributes of theV ’s:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 28/50

Algorithm Principle

The distribution p(x) is represented by a simple model (UMDA)

A simple distribution f(V) is used to introduce variable dependencies

x V

f(V)

V(x1, x2, . . . , xn)

p(x1), p(x2), . . . , p(xn)

Two simple models ⇒ Complex model

f(V)

Required attributes of theV ’s:1. m < n

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 28/50

Algorithm Principle

The distribution p(x) is represented by a simple model (UMDA)

A simple distribution f(V) is used to introduce variable dependencies

x V

f(V)

V(x1, x2, . . . , xn)

p(x1), p(x2), . . . , p(xn)

Two simple models ⇒ Complex model

f(V)

Required attributes of theV ’s:1. m < n

2. m does not grow with n

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 28/50

Algorithm Principle

The distribution p(x) is represented by a simple model (UMDA)

A simple distribution f(V) is used to introduce variable dependencies

x V

f(V)

V(x1, x2, . . . , xn)

p(x1), p(x2), . . . , p(xn)

Two simple models ⇒ Complex model

f(V)

Required attributes of theV ’s:1. m < n

2. m does not grow with n

3. inexpensive tocompute

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 28/50

The Double-Distribution Optimization Algo-rithm

Initialize P(xi) and f(V)

(Apply mutation)

Select m good points

based on the fitness

Estimate the distributions

P(xi) and f(V) of the selected points

Create l target points

by sampling from f(V)

Create n candidate points

by sampling from P(xi)

Keep l candidate points

closest to the targets points

Initialize P(xi) and f(V)

(Apply mutation)

Select m good points

based on the fitness

Estimate the distributions

P(xi) and f(V) of the selected points

Create l target points

by sampling from f(V)

Create n candidate points

by sampling from P(xi)

Create l target points

by sampling from f(V)

Create n candidate points

by sampling from P(xi)

Keep l candidate points

closest to the targets points

Goal: create points whose distribution that reflects both p(x) and f(V):

p(xi) provides a pool of points that have correct marginaldistributions.

f(V) is used as a filter that favors promising regions.

The relative influence of the 2 distributions is adjusted through ν/λ

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 29/50

Application to Laminate Optimization Problems

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 30/50

Case of composite laminates:Auxiliary variables = “Lamination Parameters”

V ≡ Lamination parameters = geometric contribution of the plies tothe stiffness.

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 31/50

Case of composite laminates:Auxiliary variables = “Lamination Parameters”

V ≡ Lamination parameters = geometric contribution of the plies tothe stiffness.

E.g. in-plane problem:

A11

A22

A12

A66

= h

U1 U2 U3

U1 −U2 U3

U5 0 −U3

U4 0 −U3

1

V ∗1

V ∗3

h: total laminate thickness, Ui’s: material invariants

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 31/50

Case of composite laminates:Auxiliary variables = “Lamination Parameters”

V ≡ Lamination parameters = geometric contribution of the plies tothe stiffness.

E.g. in-plane problem:

A11

A22

A12

A66

= h

U1 U2 U3

U1 −U2 U3

U5 0 −U3

U4 0 −U3

1

V ∗1

V ∗3

h: total laminate thickness, Ui’s: material invariants

Symmetric balanced laminates [±θ1,±θ2, . . . ,±θn]s:

V ∗{1,3} =

2

h

∫ h/2

0

{cos 2θ, cos 4θ}dz =1

n

n∑

k=1

{cos 2θk, cos 4θk}

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 31/50

Representation of the probability distributions

Distribution in the θ-domain

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Representation of the probability distributions

Distribution in the θ-domain

x ≡ θ

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Representation of the probability distributions

Distribution in the θ-domain

x ≡ θ

Discrete univariate model➫ estimate marginal frequen-cies

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Representation of the probability distributions

Distribution in the θ-domain

x ≡ θ

Discrete univariate model➫ estimate marginal frequen-cies

Distribution in the V-domain

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Representation of the probability distributions

Distribution in the θ-domain

x ≡ θ

Discrete univariate model➫ estimate marginal frequen-cies

Distribution in the V-domain

Continuous variables

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Representation of the probability distributions

Distribution in the θ-domain

x ≡ θ

Discrete univariate model➫ estimate marginal frequen-cies

Distribution in the V-domain

Continuous variables

Use kernel density estimate:

f(V) =1

µ

µ∑

i=1

K (V − Vi)

In this work, we usedGaussian kernels:

K(u) =1

(2π)d/2σdexp

(

−u

Tu

σ2

)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 32/50

Estimated Distributions: UMDA and DDOAUMDA: probability concentrated

around (55, 55)Fitness function and selected points

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

OPTIMUM

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 33/50

Estimated Distributions: UMDA and DDOAUMDA: probability concentrated

around (55, 55)

DDOA: the mass is distributedalong the “tunnel”

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 33/50

Estimated Distributions: UMDA and DDOAUMDA: probability concentrated

around (55, 55)

DDOA: the mass is distributedalong the “tunnel”

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

θ1

θ 2Sampling from p(θ1), . . . , p(θn) leads to an inaccurate distribution

V-based selection improves the distribution by introducing variabledependencies

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 33/50

Application I: Design of “zero-CTE” laminates

Objective: minimize the longitudinal coefficient of thermal expansion(CTE) subject to a constraint on the first natural vibration frequency,for a 50 in × 15 in plate

minimize |αx|

such that f1 ≥ fmin

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 34/50

Application I: Design of “zero-CTE” laminates

Objective: minimize the longitudinal coefficient of thermal expansion(CTE) subject to a constraint on the first natural vibration frequency,for a 50 in × 15 in plate

minimize |αx|

such that f1 ≥ fmin

Constraint enforced through a penalty approach

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 34/50

Application I: Design of “zero-CTE” laminates

Objective: minimize the longitudinal coefficient of thermal expansion(CTE) subject to a constraint on the first natural vibration frequency,for a 50 in × 15 in plate

minimize |αx|

such that f1 ≥ fmin

Constraint enforced through a penalty approach

Possible values of the angles: θk ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦}

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 34/50

Application I: Design of “zero-CTE” laminates

Objective: minimize the longitudinal coefficient of thermal expansion(CTE) subject to a constraint on the first natural vibration frequency,for a 50 in × 15 in plate

minimize |αx|

such that f1 ≥ fmin

Constraint enforced through a penalty approach

Possible values of the angles: θk ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦}

Case n = 12: optimum = [904/ ± 67.5/06/ ± 22.56]s

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 34/50

Application I: Design of “zero-CTE” laminates

Objective: minimize the longitudinal coefficient of thermal expansion(CTE) subject to a constraint on the first natural vibration frequency,for a 50 in × 15 in plate

minimize |αx|

such that f1 ≥ fmin

Constraint enforced through a penalty approach

Possible values of the angles: θk ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦}

Case n = 12: optimum = [904/ ± 67.5/06/ ± 22.56]s

Particularity: response is a function of the lamination parameters only➫ V ’s provide reliable information about the optimum

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 34/50

Comparison with UMDA and GA

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of evaluations

relia

bilit

y (5

0 ru

ns)

GAUMDADDOA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 35/50

Comparison with UMDA and GA

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of evaluations

relia

bilit

y (5

0 ru

ns)

GAUMDADDOA

GA and UMDA’s progress falls off after 600 analyses

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 35/50

Comparison with UMDA and GA

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of evaluations

relia

bilit

y (5

0 ru

ns)

GAUMDADDOA

GA and UMDA’s progress falls off after 600 analyses

DDOA reaches high a reliability (90%)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 35/50

Comparison with UMDA and GA

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of evaluations

relia

bilit

y (5

0 ru

ns)

GAUMDADDOA

GA and UMDA’s progress falls off after 600 analyses

DDOA reaches high a reliability (90%)

➫ For this problem, DDOA benefits from the use of auxiliary variables(incorporation of physics-based information improves accuracy ofp(x))

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 35/50

Application II: Strength Maximization

Strength maximization problem:

maximize λs =n

mink=1

(

min

(

ǫult1

ǫ1(k),

ǫult2

ǫ2(k),

γult12

γ12(k)

))

1000 N/m

200 N/m400 N/m

1000 N/m

200 N/m400 N/m

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 36/50

Application II: Strength Maximization

Strength maximization problem:

maximize λs =n

mink=1

(

min

(

ǫult1

ǫ1(k),

ǫult2

ǫ2(k),

γult12

γ12(k)

))

1000 N/m

200 N/m400 N/m

1000 N/m

200 N/m400 N/m

Characteristics of this problem:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 36/50

Application II: Strength Maximization

Strength maximization problem:

maximize λs =n

mink=1

(

min

(

ǫult1

ǫ1(k),

ǫult2

ǫ2(k),

γult12

γ12(k)

))

1000 N/m

200 N/m400 N/m

1000 N/m

200 N/m400 N/m

Characteristics of this problem:the V ’s do not capture allthe response:λs = λs(V1, V3, θ1, . . . , θn)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 36/50

Application II: Strength Maximization

Strength maximization problem:

maximize λs =n

mink=1

(

min

(

ǫult1

ǫ1(k),

ǫult2

ǫ2(k),

γult12

γ12(k)

))

1000 N/m

200 N/m400 N/m

1000 N/m

200 N/m400 N/m

Characteristics of this problem:the V ’s do not capture allthe response:λs = λs(V1, V3, θ1, . . . , θn)

many local optima 0

50

1000

50

100

15

20

25

30

35

40

x2x

1

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 36/50

Comparison with UMDA and GA

Case n = 12

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Global optimum:[014/ ± 67.55]s, λs = 4.74

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Global optimum:[014/ ± 67.55]s, λs = 4.74

Parameters: λ = µ = 30, lin-ear ranking selection, pm =0.02

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Global optimum:[014/ ± 67.55]s, λs = 4.74

Parameters: λ = µ = 30, lin-ear ranking selection, pm =0.02

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Global optimum:[014/ ± 67.55]s, λs = 4.74

Parameters: λ = µ = 30, lin-ear ranking selection, pm =0.02

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

➫ UMDA and GA locally improve the initial candidate solutions, but failto converge to high-fitness solutions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Comparison with UMDA and GA

Case n = 12

θk ∈ {0◦, 22.5◦, 45◦, 67.5◦,90◦

Global optimum:[014/ ± 67.55]s, λs = 4.74

Parameters: λ = µ = 30, lin-ear ranking selection, pm =0.02

0 500 1000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

➫ UMDA and GA locally improve the initial candidate solutions, but failto converge to high-fitness solutions

➫ DDOA reliably finds the optimum

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 37/50

Distribution of the solutions found

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

UMDA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

GA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

DDOA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 38/50

Distribution of the solutions found

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

UMDA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

GA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

DDOA

UMDA converges to poor solutions easy to find (e.g.[04/ ± 22.53/ ± 453/ ± 67.5/906]s): the univariate model cannotidentify good regions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 38/50

Distribution of the solutions found

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

UMDA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

GA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

DDOA

UMDA converges to poor solutions easy to find (e.g.[04/ ± 22.53/ ± 453/ ± 67.5/906]s): the univariate model cannotidentify good regions

GA correctly converges to the neighborhood of the global optimum,but does not explore it (small variance)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 38/50

Distribution of the solutions found

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

UMDA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

GA

500 1000 1500 2000 2500 30003

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

number of evaluations

F

DDOA

UMDA converges to poor solutions easy to find (e.g.[04/ ± 22.53/ ± 453/ ± 67.5/906]s): the univariate model cannotidentify good regions

GA correctly converges to the neighborhood of the global optimum,but does not explore it (small variance)

DDOA focuses the search on high-fitness regions. The two lowerbasins of attraction present in GA and UMDA bearly appear

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 38/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Observation: tendency to underestimate p in unexplored regions(loss of variable values = “premature convergence”)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Observation: tendency to underestimate p in unexplored regions(loss of variable values = “premature convergence”)

➫ Diversity preservation mechanisms must be implemented tocompensate for lost points

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Observation: tendency to underestimate p in unexplored regions(loss of variable values = “premature convergence”)

➫ Diversity preservation mechanisms must be implemented tocompensate for lost points

Two mechanisms:

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Observation: tendency to underestimate p in unexplored regions(loss of variable values = “premature convergence”)

➫ Diversity preservation mechanisms must be implemented tocompensate for lost points

Two mechanisms:mutation: a perturbation is applied with probability pm to eachvariable θk of each of the λ created points

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Diversity preservation mechanisms

Theoretical EDA: infinite population λ

Implementation: finite (small) population ➫ estimation error on p(x)

Observation: tendency to underestimate p in unexplored regions(loss of variable values = “premature convergence”)

➫ Diversity preservation mechanisms must be implemented tocompensate for lost points

Two mechanisms:mutation: a perturbation is applied with probability pm to eachvariable θk of each of the λ created pointslower bound on marginal probabilities: the probability p(θk = cl) isnot allowed to fall below a threshold ǫ

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 39/50

Effect of mutation

UMDA DDOA

0 500 1000 1500 2000 2500 30000

0.05

0.1

0.15

0.2

0.25

number of evaluations

Rel

iabi

lity

(95%

,50

runs

)

pm

=0, ε=0p

m=0.005, ε=0

pm

=0.01, ε=0p

m=0.02, ε=0

pm

=0.03, ε=0p

m=0.04, ε=0

pm

=0.05, ε=0

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of evaluations

Rel

iabi

lity

(95%

,50

runs

)

pm

=0, ε=0p

m=0.005, ε=0

pm

=0.01, ε=0p

m=0.02, ε=0

pm

=0.03, ε=0p

m=0.04, ε=0

pm

=0.05, ε=0

even with a large mutation rate, UMDA does not reliably find theoptimum (probability of obtaining a good point by chance very lowwith n = 12)

mutation greatly improve DDOA’s performance: the auxiliary variablescheme filters out poor candidates created by mutation

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 40/50

Effect of the lower bound on marginal distri-butions

UMDA DDOA

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of evaluations

Rel

iabi

lity

(95%

,50

runs

)

pm

=0, ε=0p

m=0, ε=0.01

pm

=0, ε=0.02p

m=0, ε=0.04

pm

=0, ε=0.06p

m=0, ε=0.08

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of evaluations

Rel

iabi

lity

(95%

,50

runs

)

pm

=0, ε=0p

m=0, ε=0.01

pm

=0, ε=0.02p

m=0, ε=0.04

pm

=0, ε=0.06p

m=0, ε=0.08

preventing probabilities to vanish improves UMDA’s reliability but itremains inferior to DDOA.

DDOA greatly benefits from bounding the probabilities. Theperformance is not sensitive to the value of ǫsame explanation as for mutation

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 41/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Let λ, ν, pm, ǫ vary

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Let λ, ν, pm, ǫ vary

Best variants:GA: λ = 80, pm = 0.02UMDA: λ = 40, ǫ = 0.06DDOA: λ = 40, ν = 200, ǫ =0.06

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Let λ, ν, pm, ǫ vary

Best variants:GA: λ = 80, pm = 0.02UMDA: λ = 40, ǫ = 0.06DDOA: λ = 40, ν = 200, ǫ =0.06

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Let λ, ν, pm, ǫ vary

Best variants:GA: λ = 80, pm = 0.02UMDA: λ = 40, ǫ = 0.06DDOA: λ = 40, ν = 200, ǫ =0.06

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

➫ Significant improvement over UMDA (variable dependencies)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

Performance with optimized parameters forthe strength problem

Parameter study for GA,UMDA, and DDOA

Let λ, ν, pm, ǫ vary

Best variants:GA: λ = 80, pm = 0.02UMDA: λ = 40, ǫ = 0.06DDOA: λ = 40, ν = 200, ǫ =0.06

0 500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of evaluations

relia

bilit

y (9

5%, 5

0 ru

ns)

GAUMDADDOA

➫ Significant improvement over UMDA (variable dependencies)

➫ DDOA more efficient than GA even without mutation

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 42/50

General Conclusions

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 43/50

Concluding Remarks

Estimation of Distribution Algorithms are a formalization ofevolutionary algorithms: provide a sound statistical framework

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 44/50

Concluding Remarks

Estimation of Distribution Algorithms are a formalization ofevolutionary algorithms: provide a sound statistical framework

Applicability to laminate optimization was demonstrated:UMDA displayed comparable to higher performance than otherstochastic algorithms (SHC and GA)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 44/50

Concluding Remarks

Estimation of Distribution Algorithms are a formalization ofevolutionary algorithms: provide a sound statistical framework

Applicability to laminate optimization was demonstrated:UMDA displayed comparable to higher performance than otherstochastic algorithms (SHC and GA)

A strategy for improving the statistical model of promising regionsthrough auxiliary variables was proposed: the Double-DistributionOptimization Algorithm

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 44/50

Concluding Remarks

Estimation of Distribution Algorithms are a formalization ofevolutionary algorithms: provide a sound statistical framework

Applicability to laminate optimization was demonstrated:UMDA displayed comparable to higher performance than otherstochastic algorithms (SHC and GA)

A strategy for improving the statistical model of promising regionsthrough auxiliary variables was proposed: the Double-DistributionOptimization Algorithm

Application to laminate optimization showed the efficiency of theapproach for problems with strong variable dependencies+ greater stability to the value of the algorithlm parameters

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 44/50

Concluding Remarks

Estimation of Distribution Algorithms are a formalization ofevolutionary algorithms: provide a sound statistical framework

Applicability to laminate optimization was demonstrated:UMDA displayed comparable to higher performance than otherstochastic algorithms (SHC and GA)

A strategy for improving the statistical model of promising regionsthrough auxiliary variables was proposed: the Double-DistributionOptimization Algorithm

Application to laminate optimization showed the efficiency of theapproach for problems with strong variable dependencies+ greater stability to the value of the algorithlm parameters

A study of the diversity was conducted: proposed direct control of thedistribution diversity

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 44/50

Future workExtension of DDOA to continuous problems (constraints as auxiliaryvariables): preliminary results are promising

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 45/50

Future workExtension of DDOA to continuous problems (constraints as auxiliaryvariables): preliminary results are promising

Application to other fields where auxiliary variables are available

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 45/50

Future workExtension of DDOA to continuous problems (constraints as auxiliaryvariables): preliminary results are promising

Application to other fields where auxiliary variables are available

Detection of failure situations: how to check the validity of p(x) andwhat to do when failure is detected?

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 45/50

Backup Slides

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 46/50

Balanced symmetric laminate

Particular case: bal-anced symmetric laminates[±θ1,±θ2, . . . ,±θn]s

h/2

zn

zn−1

z1

z0

zk

zk−1

n

1

k

θn

−θn

θk

−θk

θ1

−θ1

Mid-plane

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 47/50

Constraint enforcement through a penalty ap-proach

Consider the following optimization problem:

maximize F (x)

such that gj(x) ≥ 0, j = 1, . . . , m

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 48/50

Constraint enforcement through a penalty ap-proach

Consider the following optimization problem:

maximize F (x)

such that gj(x) ≥ 0, j = 1, . . . , m

The penalty approach transforms this constrained problem into anunconstrained problem by decreasing the objective functionproportionally to the constraint violation:

Fp(x) =

{

F (x) if gj(x) ≥ 0, j = 1, . . . , m

F (x) + p minmj=1 (gj(x)) if ∃ k ∈ {1, . . . , m} s.t. gk(x) < 0

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 48/50

Kernel density estimate: principle

f(V ) is continuous, low dimensional (2D or 4D in our problems) ➫Akernel density estimation approach is adopted:

f(V) =1

µ

µ∑

i=1

K (V − Vi)

In this work, we used Gaussian kernels:

K(u) =1

(2π)d/2σdexp

(

−u

Tu

σ2

)

where σ determines the smoothness of the estimate

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 49/50

Kernel density estimate: illustration

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

0

0.2

0.4

0.6

0.8

1

V

f(V

)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 50/50

Kernel density estimate: illustration

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

0

0.2

0.4

0.6

0.8

1

V

f(V

)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 50/50

Kernel density estimate: illustration

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

0

0.2

0.4

0.6

0.8

1

V

f(V

)

Optimization of Composite Structures by Estimation of Distribution Algorithms – p. 50/50

top related