on ๐‘ฎโˆ’banach bessel sequences in banach spacesย ยท optics, filter banks, signal detection as...

Post on 19-Aug-2020

9 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5129-5142

ยฉ Research India Publications

http://www.ripublication.com

On ๐‘ฎ โˆ’Banach Bessel Sequences in Banach Spaces

Ghanshyam Singh Rathore1 and Tripti Mittal2

1Department of Mathematics and Statistics, University College of Science,

M.L.S. University, Udaipur, INDIA.

2Department of Mathematics, Northern India Engineering College,

G.G.S. Inderprastha University, Delhi, INDIA.

Abstract

Abdollahpour et.al [1] generalized the concepts of frames for Banach Spaces

and defined ๐‘” โˆ’Banach frames in Banach spaces. In the present paper, we

define ๐‘” โˆ’ Banach Bessel sequences in Banach spaces and study their

relationship with ๐‘” โˆ’Banach frames. A sufficient condition for a sequence of

bounded operators to be a ๐‘” โˆ’Banach frame, in terms of ๐‘” โˆ’Banach Bessel

sequence has been given. Further, we study bounded linear operators on an

associated Banach space ๐‘‹๐‘‘. Also, a necessary and sufficient condition for a

kind of ๐‘” โˆ’Banach Bessel sequence to be a ๐‘” โˆ’Banach frame has been given.

Furthermore, we give stability condition for the stability of ๐‘” โˆ’Banach Bessel

sequences.

1. INTRODUCTION

Frames are main tools for use in signal processing, image processing, data compression

and sampling theory etc. Today even more uses are being found for the theory such as

optics, filter banks, signal detection as well as study of Besov spaces, Banach space

theory etc. Frames for Hilbert spaces were introduced by Duffin and Schaeffer [12].

Later, in 1986, Daubechies, Grossmann and Meyer [11] reintroduced frames and found

a new application to wavelet and Gabor transforms. For a nice introduction to frames,

one may refer [4].

5130 Ghanshyam Singh Rathore and Tripti Mittal

Coifman and Weiss [10] introduced the notion of atomic decomposition for function

spaces. Feichtinger and Grรถchening [14] extended the notion of atomic decomposition

to Banach spaces. Grรถchening [16] introduced a more general concept for Banach

spaces called Banach frame. He gave the following definition of a Banach frame:

Definition 1.1. ([16]) Let ๐‘‹ be a Banach space and ๐‘‹๐‘‘1 an associated Banach space

of scalar-valued sequences indexed by โ„•. Let {๐‘“๐‘›} โŠ‚ ๐‘‹โˆ— and ๐‘†: ๐‘‹๐‘‘1โ†’ ๐‘‹ be given.

Then the pair ({๐‘“๐‘›}, ๐‘†) is called a Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘1, if

1. {๐‘“๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘1, for each ๐‘ฅ โˆˆ ๐‘‹.

2. there exist positive constants ๐ด and ๐ต with 0 < ๐ด โ‰ค ๐ต < โˆž such that

๐ดโ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{๐‘“๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘1โ‰ค ๐ตโ€–๐‘ฅโ€–๐‘‹, ๐‘ฅ โˆˆ ๐‘‹. (1.1)

3. ๐‘† is a bounded linear operator such that ๐‘†({๐‘“๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹.

The positive constants ๐ด and ๐ต , respectively, are called lower and upper frame

bounds of the Banach frame ({๐‘“๐‘›}, ๐‘†) . The operator ๐‘†: ๐‘‹๐‘‘1โ†’ ๐‘‹ is called the

reconstruction operator ( or the pre-frame operator ). The inequality (1.1) is called the

frame inequalty.

Banach frames and Banach Bessel sequence in Banach spaces were further studied in

[3, 17, 18, 19, 20].

Over the last decade, various other generalizations of frames for Hilbert spaces have

been introduced and studied. Some of them are bounded quasi-projectors by Fornasier

[15]; Pseudo frames by Li and Ogawa [21]; Oblique frames by Eldar [13]; Christensen

and Eldar [5]; (,;Y )-Operators frames by Cao et.al [2]. W. Sun [24] introduced and

defined ๐‘” โˆ’frames in Hilbert spaces and observed that bounded quasi-projectors,

frames of subspaces, Pseudo frames and Oblique frames are particular cases of

๐‘” โˆ’frames in Hilbert spaces. ๐บ โˆ’frames are further studied in [6, 7, 8, 9, 22, 25].

Abdollahpour et.al [1] generalized the concepts of frames for Banach Spaces and

defined ๐‘” โˆ’ Banach frames in Banach spaces. In the present paper, we define

๐‘” โˆ’Banach Bessel sequences in Banach spaces and study their relationship with

๐‘” โˆ’Banach frames. A sufficient condition for a sequence of bounded operators to be

a ๐‘” โˆ’Banach frame, in terms of ๐‘” โˆ’Banach Bessel sequence has been given. Further,

we study bounded linear operators on an associated Banach space ๐‘‹๐‘‘ . Also, a

necessary and sufficient condition for a kind of ๐‘” โˆ’Banach Bessel sequence to be a

๐‘” โˆ’Banach frame has been given. Furthermore, we give stability condition for the

stability of ๐‘” โˆ’Banach Bessel sequences.

On G-Banach Bessel Sequences in Banach Spaces 5131

2. PRELIMINARIES

Throughout this paper, ๐‘‹ will denote a Banach space over the scalar field ๐•‚ (โ„ or

โ„‚), ๐‘‹๐‘‘ is an associated Banach space of vector valued sequences indexed by โ„•. ๐ป is

a separable Hilbert space and ๐”…(๐‘‹, ๐ป) is the collection of all bounded linear operators

from ๐‘‹ into ๐ป.

A Banach space of vector valued sequences (or BV-space) is a linear space of

sequences with a norm which makes it a Banach space. Let ๐‘‹ be a Banach space and

1 < ๐‘ < โˆž, then

๐‘Œ = {{๐‘ฅ๐‘›}: ๐‘ฅ๐‘› โˆˆ ๐‘‹; (โˆ‘ โ€–๐‘ฅ๐‘›โ€–๐‘๐‘›โˆˆโ„• )

1

๐‘ < โˆž}

and

โ„“โˆž = {{๐‘ฅ๐‘›}: ๐‘ฅ๐‘› โˆˆ ๐‘‹; sup๐‘›โˆˆโ„•

โ€–๐‘ฅ๐‘›โ€– < โˆž}

are BV space of ๐‘‹.

Definition 2.1. ([1]) Let ๐‘‹ be a Banach space and ๐ป be a separable Hilbert space.

Let ๐‘‹๐‘‘ be an associated Banach space of vector-valued sequences indexed by โ„•. Let

{ฮ›๐‘›}๐‘›โˆˆโ„• โŠ‚ ๐”…(๐‘‹, ๐ป) and ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹ be given. Then the pair ({ฮ›๐‘›}, ๐‘†) is called a

๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐ป and ๐‘‹๐‘‘, if

1. {ฮ›๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘, for each ๐‘ฅ โˆˆ ๐‘‹.

2. there exist positive constants ๐ด and ๐ต with 0 < ๐ด โ‰ค ๐ต < โˆž such that

๐ดโ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐ตโ€–๐‘ฅโ€–๐‘‹, ๐‘ฅ โˆˆ ๐‘‹. (2.1)

3. ๐‘† is a bounded linear operator such that ๐‘†({ฮ›๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹.

The positive constants ๐ด and ๐ต, respectively, are called the lower and upper frame

bounds of the ๐‘” โˆ’Banach frame ({ฮ›๐‘›}, ๐‘†). The operator ๐‘† โˆถ ๐‘‹๐‘‘ โ†’ ๐‘‹ is called the

reconstruction operator and the inequality (2.1) is called the frame inequality for

๐‘” โˆ’Banach frame ({ฮ›n}, ๐‘†).

The following lemma, proved in [23], is used in the sequel:

Lemma 2.2. Let ๐‘‹ be a Banach space and ๐ป be a separable Hilbert space. Let

{ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a sequence of non-zero operators. If {ฮ›๐‘›} is total over ๐‘‹, i.e.,

5132 Ghanshyam Singh Rathore and Tripti Mittal

{๐‘ฅ โˆˆ ๐‘‹: ๐›ฌ๐‘›(๐‘ฅ) = 0, ๐‘› โˆˆ โ„•} = {0}, then ๐’œ = {{ฮ›๐‘›(๐‘ฅ)}: ๐‘ฅ โˆˆ ๐‘‹} is a Banach space

with the norm given by โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ = โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

3. ๐‘ฎ โˆ’BANACH BESSEL SEQUENCES

We begin this section with the following definition of ๐‘” โˆ’Banach Bessel Sequences

in Banach spaces.

Definition 3.1. Let ๐‘‹ be a Banach space and ๐ป be a separable Hilbert space. Let ๐‘‹๐‘‘

be an associated Banach space of vector-valued sequences indexed by โ„•. A sequence

of operators {ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) is said to be a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with

respect to ๐‘‹๐‘‘, if

1. {ฮ›๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘, for each ๐‘ฅ โˆˆ ๐‘‹.

2. there exist a positive constant ๐‘€ such that

โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐‘€โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹. (3.1)

The positive constant ๐‘€ is called a ๐‘” โˆ’Banach Besssel bound (or simply, a bound)

for the ๐‘” โˆ’Banach Bessel sequence {ฮ›๐‘›}.

In the view of Definition 3.1, the following observations arise naturally:

(I). If ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘† โˆถ ๐‘‹๐‘‘ โ†’ ๐‘‹) is a ๐‘” โˆ’ Banach frame for ๐‘‹

with respect to ๐‘‹๐‘‘ and with bounds ๐ด, ๐ต, then {ฮ›๐‘›} is a ๐‘” โˆ’Banach Bessel

sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ and with bound ๐ต.

(II). A sequence {ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with

respect ๐‘‹๐‘‘ if and only if the coefficient mapping ๐‘‡ โˆถ ๐‘‹ โ†’ ๐‘‹๐‘‘ given by

๐‘‡(๐‘ฅ) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹ is bounded.

(III). For each ๐‘– โˆˆ {1,2, โ€ฆ . , ๐‘˜} , if {ฮ›๐‘–,๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) is a ๐‘” โˆ’ Banach Bessel

sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ and with bound ๐‘€๐‘–, then {โˆ‘ ๐›ผ๐‘–ฮ›๐‘–,๐‘›๐‘˜๐‘–=1 } is

also a ๐‘” โˆ’ Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ with

bound โˆ‘ |๐›ผ๐‘–|๐‘€๐‘–๐‘˜๐‘–=1 , where ๐›ผ๐‘– โˆˆ โ„, ๐‘– = 1,2, โ€ฆ , ๐‘˜.

(IV). Let ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘† โˆถ ๐‘‹๐‘‘ โ†’ ๐‘‹) be a ๐‘” โˆ’Banach frame for ๐‘‹

with respect to ๐‘‹๐‘‘ and with bounds ๐ด , ๐ต . Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a

sequence of operators such that {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence

for ๐‘‹ with respect to ๐‘‹๐‘‘ and with bound ๐พ. Then {ฮ˜๐‘›} is also a ๐‘” โˆ’Banach

Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ with bound ๐พ + ๐ต.

On G-Banach Bessel Sequences in Banach Spaces 5133

Remark 3.2. The converse of the observation (I) need not be true. In this regard, we

give the following example:

Example 3.3. Let ๐ป be a separable Hilbert space and let ๐ธ = ๐‘™โˆž(๐ป) = {{๐‘ฅ๐‘›} โˆถ ๐‘ฅ๐‘› โˆˆ

๐ป; sup1โ‰ค๐‘›<โˆžโ€–๐‘ฅ๐‘›โ€–๐ป < โˆž} be a Banach space with the norm given by

โ€–{๐‘ฅ๐‘›}โ€–๐ธ = sup1โ‰ค๐‘›<โˆž

โ€–๐‘ฅ๐‘›โ€–๐ป , {๐‘ฅ๐‘›} โˆˆ ๐ธ

and ๐ธ๐‘‘ โŠ‚ ๐‘™โˆž(๐ป).

Now, for each ๐‘› โˆˆ โ„•, define ฮ›๐‘›: ๐ธ โ†’ ๐ป by

ฮ›1(๐‘ฅ) = ๐›ฟ2

๐‘ฅ2

ฮ›๐‘›(๐‘ฅ) = ๐›ฟ๐‘›+1๐‘ฅ๐‘›+1 , ๐‘› > 1

} , ๐‘ฅ = {๐‘ฅ๐‘›} โˆˆ ๐ธ,

where, ๐›ฟ๐‘›๐‘ฅ = (0,0, โ€ฆ , ๐‘ฅโŸ

โ†“๐‘›๐‘กโ„Ž๐‘๐‘™๐‘Ž๐‘๐‘’

, 0,0, โ€ฆ ), for all ๐‘› โˆˆ โ„• and ๐‘ฅ โˆˆ ๐ป.

Then {ฮ›๐‘›(๐‘ฅ)} โˆˆ ๐ธ๐‘‘ , for all ๐‘ฅ โˆˆ ๐ธ and โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐ธ๐‘‘โ‰ค โ€–๐‘ฅโ€–๐ธ , ๐‘ฅ โˆˆ ๐ธ . Therefore,

{ฮ›๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐ธ with respect to ๐ธ๐‘‘ and with bound 1.

But, there exists no reconstruction operator ๐‘† โˆถ ๐ธ๐‘‘ โ†’ ๐ธ such that ({ฮ›๐‘›}, ๐‘†) is a

๐‘” โˆ’Banach frame for ๐ธ with respect to ๐ธ๐‘‘.

Indeed, if possible, let ({ฮ›๐‘›}, ๐‘†) be a ๐‘” โˆ’Banach frame for ๐ธ with respect to ๐ธ๐‘‘. Let

๐ด and ๐ต be choice of bounds for ({ฮ›๐‘›}, ๐‘†). Then

๐ดโ€–๐‘ฅโ€–๐ธ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐ธ๐‘‘โ‰ค ๐ตโ€–๐‘ฅโ€–๐ธ , ๐‘ฅ โˆˆ ๐ธ. (3.2)

Let ๐‘ฅ = (1,0,0, . . ,0, . . ) be a non-zero element in ๐ธ such that ฮ›๐‘›(๐‘ฅ) = 0, for all ๐‘› โˆˆ

โ„•. Then, by frame inequality (3.2), we get ๐‘ฅ = 0. Which is a contradiction.

Remark 3.4. In view of observation (IV), there exists, in general, no reconstruction

operator ๐‘†0 โˆถ ๐‘‹๐‘‘0โ†’ ๐‘‹ such that ({ฮ˜๐‘›}, ๐‘†0) is a ๐‘” โˆ’ Banach frame for ๐‘‹ with

respect to ๐‘‹๐‘‘0, where ๐‘‹๐‘‘0

is some associated Banach space of vector-valued sequences

indexed by โ„•. Regarding this, we give the following example:

Example 3.5. Let ๐ป be a separable Hilbert space and let ๐ธ = ๐‘™โˆž(๐ป) = {{๐‘ฅ๐‘›} โˆถ ๐‘ฅ๐‘› โˆˆ

๐ป; sup1โ‰ค๐‘›<โˆžโ€–๐‘ฅ๐‘›โ€–๐ป < โˆž} be a Banach space with the norm given by

โ€–{๐‘ฅ๐‘›}โ€–๐ธ = sup1โ‰ค๐‘›<โˆž

โ€–๐‘ฅ๐‘›โ€–๐ป , {๐‘ฅ๐‘›} โˆˆ ๐ธ.

5134 Ghanshyam Singh Rathore and Tripti Mittal

Now, for each ๐‘› โˆˆ โ„•, define ฮ›๐‘›: ๐ธ โ†’ ๐ป by

ฮ›๐‘›(๐‘ฅ) = ๐›ฟ๐‘›๐‘ฅ๐‘› , ๐‘ฅ = {๐‘ฅ๐‘›} โˆˆ ๐ธ,

where, ๐›ฟ๐‘›๐‘ฅ = (0,0, โ€ฆ , ๐‘ฅโŸ

โ†“๐‘›๐‘กโ„Ž๐‘๐‘™๐‘Ž๐‘๐‘’

, 0,0, โ€ฆ ), for all ๐‘› โˆˆ โ„• and ๐‘ฅ โˆˆ ๐ป.

Thus {ฮ›๐‘›} is total over ๐ธ . Therefore, by Lemma 2.2, there exists an associated

Banach space ๐’œ = {{ฮ›๐‘›(๐‘ฅ)}: ๐‘ฅ โˆˆ ๐ธ} with the norm given by โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ = โ€–๐‘ฅโ€–๐ธ ,

๐‘ฅ โˆˆ ๐ธ.

Define ๐‘† โˆถ ๐’œ โ†’ ๐ธ by ๐‘†({ฮ›๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐ธ . Then ({ฮ›๐‘›}, ๐‘†) is a ๐‘” โˆ’ Banach

frame for E with respect to ๐’œ with bounds ๐ด = ๐ต = 1.

Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐ธ, ๐ป) be a sequence of operators defined as

ฮ˜1(๐‘ฅ) = ฮ›2(๐‘ฅ),

ฮ˜๐‘›(๐‘ฅ) = ฮ›๐‘›(๐‘ฅ), ๐‘› โ‰ฅ 2, ๐‘› โˆˆ โ„•} , ๐‘ฅ โˆˆ ๐ธ.

Then, for each ๐‘ฅ โˆˆ ๐ธ, {ฮ˜๐‘›(๐‘ฅ)} โˆˆ ๐’œ and

โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐’œ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ + โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐’œ

โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ + โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ

= 2โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐’œ

= 2โ€–๐‘ฅโ€–๐ธ.

Therefore, {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐ธ with respect ๐’œ and

with bound 2. Thus, by observation (IV), {ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for

๐ธ with respect to ๐’œ and with bound 3. But, there exists no reconstruction operator

๐‘†0: ๐’œ0 โ†’ ๐ธ such that ({ฮ˜๐‘›}, ๐‘†0) is a ๐‘” โˆ’Banach frame for ๐ธ with respect to ๐’œ0,

where ๐’œ0 is some associated Banach space of vector-valued sequences indexed by

โ„•.

Note. If the Bessel bound of ๐‘” โˆ’Banach Bessel sequence {ฮ›๐‘› + ฮ˜๐‘›}, ๐พ < โ€–๐‘†โ€–โˆ’1,

then there exists an associated Banach space ๐’œ0 and a reconstruction operator

๐‘†0: ๐’œ0 โ†’ ๐‘‹ such that ({ฮ˜๐‘›}, ๐‘†0) is a normalized tight ๐‘” โˆ’Banach frame for ๐‘‹ with

respect to ๐’œ0.

In this regard, we give the following result:

Theorem 3.6. Let ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹) be a ๐‘” โˆ’Banach frame

for ๐‘‹ with respect to ๐‘‹๐‘‘. Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a sequence of operators such that

On G-Banach Bessel Sequences in Banach Spaces 5135

{ฮ›๐‘› + ฮ˜๐‘›} be a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ and with

bound ๐พ < โ€–๐‘†โ€–โˆ’1. Then, there exists a reconstruction operator ๐‘†0: ๐‘‹๐‘‘0โ†’ ๐‘‹ such that

({ฮ˜๐‘›}, ๐‘†0) is a normalized tight ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘0=

{{ฮ˜๐‘›(๐‘ฅ)}: ๐‘ฅ โˆˆ ๐‘‹}.

Proof: Let ({ฮ›๐‘›}, ๐‘†) be a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘ and with

bounds ๐ด, ๐ต. Then

๐ดโ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐ตโ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

Since {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ and with

bound ๐พ, then

(โ€–๐‘†โ€–โˆ’1 โˆ’ ๐พ)โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โˆ’ โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘, for all ๐‘ฅ โˆˆ ๐‘‹.

Thus {ฮ˜๐‘›} is total over ๐‘‹ . Therefore, by Lemma 2.2, there exists an associated

Banach space ๐‘‹๐‘‘0= {{ฮ˜๐‘›(๐‘ฅ)}: ๐‘ฅ โˆˆ ๐‘‹} with the norm given by โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘0

=

โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹. Define ๐‘†0: ๐‘‹๐‘‘0โ†’ ๐‘‹ by ๐‘†0({ฮ˜๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹ . Then ๐‘† is a

bounded linear operator such that ({ฮ˜๐‘›}, ๐‘†0) is a normalized tight ๐‘” โˆ’Banach frame

for ๐‘‹ with respect to ๐‘‹๐‘‘0.

Towards, the converse of the Theroem 3.6, we give the following result:

Theorem 3.7. Let ({ฮ›๐‘›}, ๐‘†) and ({ฮ˜๐‘›}, ๐‘‡) be two ๐‘” โˆ’Banach frame for ๐‘‹ with

respect to ๐‘‹๐‘‘. Let ๐ฟ โˆถ ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ be a linear homeomorphism such that ๐ฟ({ฮ›๐‘›(๐‘ฅ)}) ={ฮ˜๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹ . Then {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’ Banach Bessel sequence for ๐‘‹ with

respect to ๐‘‹๐‘‘ and with bound

๐พ = min{โ€–๐‘ˆโ€–โ€–๐ผ + ๐ฟโ€–, โ€–๐‘‰โ€–โ€–๐ผ + ๐ฟโˆ’1โ€–}

where ๐‘ˆ, ๐‘‰: ๐‘‹๐‘‘ โ†’ ๐‘‹ are the coefficient mappings given by ๐‘ˆ(๐‘ฅ) = {ฮ›๐‘›(๐‘ฅ)} and

๐‘‰(๐‘ฅ) = {ฮ˜๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹ and ๐ผ is an identity mapping on ๐‘‹๐‘‘.

Proof. For each ๐‘ฅ โˆˆ ๐‘‹, we have

โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘= โ€–{ฮ›๐‘›(๐‘ฅ)} + {ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

= โ€–๐ผ({ฮ›๐‘›(๐‘ฅ)}) + ๐ฟ({ฮ›๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘

โ‰ค โ€–๐ผ + ๐ฟโ€–โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

= โ€–๐ผ + ๐ฟโ€–โ€–๐‘ˆ(๐‘ฅ)โ€–๐‘‹๐‘‘

โ‰ค (โ€–๐ผ + ๐ฟโ€–โ€–๐‘ˆโ€–)โ€–๐‘ฅโ€–๐‘‹.

5136 Ghanshyam Singh Rathore and Tripti Mittal

Therefore

โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค (โ€–๐‘ˆโ€–โ€–๐ผ + ๐ฟโ€–)โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹. (3.3)

Similarly, we have

โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค (โ€–๐‘‰โ€–โ€–๐ผ + ๐ฟโˆ’1โ€–)โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹. (3.4)

Using (3.3) and (3.4), it follows that {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for

๐‘‹ with respect to ๐‘‹๐‘‘ and with bound

๐พ = min{โ€–๐‘ˆโ€–โ€–๐ผ + ๐ฟโ€–, โ€–๐‘‰โ€–โ€–๐ผ + ๐ฟโˆ’1โ€–}.

Remark 3.8. One may observe that, if ({ฮ›๐‘›}, ๐‘†) and ({ฮ˜๐‘›}, ๐‘‡) are two ๐‘” โˆ’Banach

frames for ๐‘‹ with respect to ๐‘‹๐‘‘, then {ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence

for ๐‘‹ with respect to ๐‘‹๐‘‘ with bound โ€–๐‘ˆโ€– + โ€–๐‘‰โ€– , where ๐‘ˆ, ๐‘‰: ๐‘‹ โ†’ ๐‘‹๐‘‘ are the

coefficient mappings given by ๐‘ˆ(๐‘ฅ) = {ฮ›๐‘›(๐‘ฅ)} and ๐‘‰(๐‘ฅ) = {ฮ˜๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

4. BOUNDED LINEAR OPERATORS ON ๐‘ฟ๐’…

We begin this section with following result which shows that the action of a bounded

linear operator on ๐‘‹๐‘‘ to construct a ๐‘” โˆ’Banach Bessel sequence, using a given

๐‘” โˆ’Banach Bessel sequence.

Theorem 4.1. Let {ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with

respect to ๐‘‹๐‘‘ . Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be such that {ฮ˜๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘ , ๐‘ฅ โˆˆ ๐‘‹ and let

๐‘Š: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ be a bounded linear operator such that ๐‘Š({ฮ›๐‘›(๐‘ฅ)}) = {ฮ˜๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

Then {ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘.

Proof. Let {ฮ›๐‘›} be a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with Bessel bound ๐‘€. Then,

for each ๐‘ฅ โˆˆ ๐‘‹, we have

โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘= โ€–๐‘Š({ฮ›๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘

โ‰ค โ€–๐‘Šโ€–โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค (โ€–๐‘Šโ€–๐‘€)โ€–๐‘ฅโ€–๐‘‹.

Remark 4.2. In the view of Theorem 4.1, we observe that if ({ฮ›๐‘›}, ๐‘†)

({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘ and

๐‘Š: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ is a bounded linear operator such that ๐‘Š({ฮ›๐‘›(๐‘ฅ)}) = {ฮ˜๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

Then, there exists, in general no reconstruction operator ๐‘‡: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ such that

({ฮ˜๐‘›}, ๐‘‡) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘.

In this regarding, we give the following example:

On G-Banach Bessel Sequences in Banach Spaces 5137

Example 4.3. Let ๐ป be a separable Hilbert space and let ๐ธ = ๐‘™โˆž(๐ป) = {{๐‘ฅ๐‘›} โˆถ ๐‘ฅ๐‘› โˆˆ

๐ป; sup1โ‰ค๐‘›<โˆžโ€–๐‘ฅ๐‘›โ€–๐ป < โˆž} be a Banach space with the norm given by

โ€–{๐‘ฅ๐‘›}โ€–๐ธ = sup1โ‰ค๐‘›<โˆž

โ€–๐‘ฅ๐‘›โ€–๐ป , {๐‘ฅ๐‘›} โˆˆ ๐ธ .

Now, for each ๐‘› โˆˆ โ„•, define ฮ›๐‘›: ๐ธ โ†’ ๐ป by

ฮ›๐‘›(๐‘ฅ) = ๐›ฟ๐‘›๐‘ฅ๐‘› , ๐‘ฅ = {๐‘ฅ๐‘›} โˆˆ ๐ธ,

where, ๐›ฟ๐‘›๐‘ฅ = (0,0, โ€ฆ , ๐‘ฅโŸ

โ†“๐‘›๐‘กโ„Ž๐‘๐‘™๐‘Ž๐‘๐‘’

, 0,0, โ€ฆ ), for all ๐‘› โˆˆ โ„• and ๐‘ฅ โˆˆ ๐ป.

Thus {ฮ›๐‘›} is total over ๐ธ . Therefore, by Lemma 2.2, there exists an associated

Banach space ๐ธ๐‘‘ = {{ฮ›๐‘›(๐‘ฅ)}: ๐‘ฅ โˆˆ ๐ธ} with the norm given by โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐ธ๐‘‘= โ€–๐‘ฅโ€–๐ธ ,

๐‘ฅ โˆˆ ๐ธ.

Define ๐‘† โˆถ ๐ธ๐‘‘ โ†’ ๐ธ by ๐‘†({ฮ›๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐ธ . Then ({ฮ›๐‘›}, ๐‘†) is a ๐‘” โˆ’ Banach

frame for E with respect to ๐ธ๐‘‘ with bounds ๐ด = ๐ต = 1.

Now, define ๐‘Š: ๐ธ๐‘‘ โ†’ ๐ธ๐‘‘ as ๐‘Š({ฮ›๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}๐‘›โ‰ 1 . Then ๐‘Š is a bounded

linear operator on ๐ธ๐‘‘ . But, there exists no reconstruction operator ๐‘‡: ๐ธ๐‘‘ โ†’ ๐ธ such

that ({ฮ›๐‘›}๐‘›โ‰ 1, ๐‘‡) is a ๐‘” โˆ’Banach frame for ๐ธ with respect to ๐ธ๐‘‘.

Indeed, if possible, let ({ฮ›๐‘›}๐‘›โ‰ 1, ๐‘‡) is a ๐‘” โˆ’Banach frame for ๐ธ with respect to ๐ธ๐‘‘.

Let ๐ด and ๐ต be choice of bounds for ๐‘” โˆ’Banach frame ({ฮ›๐‘›}๐‘›โ‰ 1, ๐‘‡). Then

๐ดโ€–๐‘ฅโ€–๐ธ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}๐‘›โ‰ 1โ€–๐ธ๐‘‘โ‰ค ๐ตโ€–๐‘ฅโ€–๐ธ , ๐‘ฅ โˆˆ ๐ธ. (4.1)

Let ๐‘ฅ = (1,0,0, โ€ฆ ,0, โ€ฆ ) be a non-zero element in ๐ธ such that ฮ›๐‘›(๐‘ฅ) = 0, ๐‘› >

1, ๐‘› โˆˆ โ„•. Then, by frame inequality (4.1), we get ๐‘ฅ = 0. Which is a contradiction.

In the view of Theorem 4.1 and Example 4.3, we give a necessary and

sufficient condition for a ๐‘” โˆ’Banach Bessel sequence to be a ๐‘” โˆ’Banach frame.

Theorem 4.4. Let ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹) be a ๐‘” โˆ’Banach frame

for ๐‘‹ with respect to ๐‘‹๐‘‘ . Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be such that {ฮ˜๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘ , ๐‘ฅ โˆˆ ๐‘‹.

Let ๐‘Š: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ be a bounded linear operator such that ๐‘Š({ฮ›๐‘›(๐‘ฅ)}) = {ฮ˜๐‘›(๐‘ฅ)},

๐‘ฅ โˆˆ ๐‘‹. Then, there exists a reconstruction operator ๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹ such that ({ฮ˜๐‘›}, ๐‘ˆ) is

a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘ if and only if

โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ฅ ๐‘€โ€–๐ฟ({ฮ˜๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘

, ๐‘ฅ โˆˆ ๐‘‹

where, ๐‘€is a positive constant and ๐ฟ: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ is a bounded linear operator such that

๐ฟ({ฮ˜๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

5138 Ghanshyam Singh Rathore and Tripti Mittal

Proof. Let ๐ดฮ› and ๐ตฮ› be the frame bounds for the ๐‘” โˆ’Banach frame ({ฮ›๐‘›}, ๐‘†) .

Then, for all ๐‘ฅ โˆˆ ๐‘‹, we have

๐‘€๐ดฮ›โ€–๐‘ฅโ€–๐‘‹ โ‰ค ๐‘€โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

= ๐‘€โ€–๐ฟ({ฮ˜๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘

โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

= โ€–๐‘Š({ฮ›๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘

โ‰ค โ€–๐‘Šโ€–โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–๐‘Šโ€–๐ตฮ›โ€–๐‘ฅโ€–๐‘‹.

Therefore

(๐‘€๐ดฮ›)โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค (โ€–๐‘Šโ€–๐ตฮ›)โ€–๐‘ฅโ€–๐‘‹, ๐‘ฅ โˆˆ ๐‘‹.

Put ๐‘ˆ = ๐‘†๐ฟ. Then ๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹ is a bounded linear operator such that ๐‘ˆ({ฮ˜๐‘›(๐‘ฅ)}) =

๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹. Hence ({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘.

Conversely, let ({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘

and with frame bounds ๐ดฮ˜, ๐ตฮ˜. Let ๐‘‡: ๐‘‹ โ†’ ๐‘‹๐‘‘ be the coefficient mapping given by

๐‘‡(๐‘ฅ) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹. Then ๐ฟ = ๐‘‡๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ is a bounded linear operator such

that ๐ฟ({ฮ˜๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

Thus, on writing ๐‘€ = (๐ดฮ˜

๐ตฮ›) , where ๐ตฮ› is an upper bound for ๐‘” โˆ’Banach frame

({ฮ›๐‘›}, ๐‘†), we have

โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ฅ ๐ดฮ˜โ€–๐‘ฅโ€–๐‘‹

= ๐‘€๐ตฮ›โ€–๐‘ฅโ€–๐‘‹

โ‰ฅ ๐‘€โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

= ๐‘€โ€–๐ฟ({ฮ˜๐‘›(๐‘ฅ)})โ€–๐‘‹๐‘‘.

In the following result, we provide a necessary and sufficient condition for a

๐‘” โˆ’Banach frame, in terms of ๐‘” โˆ’Banach Bessel sequence.

Theorem 4.5. Let ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹) be a ๐‘” โˆ’Banach frame

for ๐‘‹ with respect to ๐‘‹๐‘‘. Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a sequence of operators such that

{ฮ›๐‘› + ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘ and with bound

๐พ < โ€–๐‘†โ€–โˆ’1 . Then, there exists a reconstruction operator ๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹ such that

({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘ if and only if there exists

a bounded linear operator ๐ฟ: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ such that ๐ฟ({ฮ˜๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

On G-Banach Bessel Sequences in Banach Spaces 5139

Proof. Let ({ฮ˜๐‘›}, ๐‘†) be a ๐‘” โˆ’Banach frame for ๐‘‹ wih respect to ๐‘‹๐‘‘. Let ๐‘‡: ๐‘‹ โ†’ ๐‘‹๐‘‘

be the coefficient mapping given by ๐‘‡(๐‘ฅ) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹. Then ๐ฟ = ๐‘‡๐‘ˆ: ๐‘‹๐‘‘ โ†’

๐‘‹๐‘‘ is a bounded linear operator such that ๐ฟ({ฮ˜๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹.

Conversely, by hypothesis {ฮ˜๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘, ๐‘ฅ โˆˆ ๐‘‹. Also, for each ๐‘ฅ โˆˆ ๐‘‹, we

have

(โ€–๐‘†โ€–โˆ’1 โˆ’ ๐พ)โ€–๐‘ฅโ€–๐‘‹ = โ€–๐‘†โ€–โˆ’1โ€–๐‘ฅโ€–๐‘‹ โˆ’ ๐พโ€–๐‘ฅโ€–๐‘‹

โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โˆ’ โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–{(ฮ›๐‘› + ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘+ โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–๐‘‡โ€–โ€–๐‘ฅโ€–๐‘‹ + ๐พโ€–๐‘ฅโ€–๐‘‹

= (โ€–๐‘‡โ€– + ๐พ)โ€–๐‘ฅโ€–๐‘‹,

where ๐‘‡ is a coefficient mapping.

Now, put ๐‘ˆ = ๐‘†๐ฟ . Then ๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹ is a bounded linear operator such that

๐‘ˆ({ฮ˜๐‘›(๐‘ฅ)}) = ๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹. Hence ({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect

to ๐‘‹๐‘‘ and frame bounds (โ€–๐‘†โ€–โˆ’1 โˆ’ ๐พ) and (โ€–๐‘‡โ€– + ๐พ).

Next, we give a necessary and sufficient condition for a ๐‘” โˆ’Banach Bessel sequence

to be a ๐‘” โˆ’Banach frame.

Theorem 4.6 Let ({ฮ›๐‘›}, ๐‘†) ({ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป), ๐‘†: ๐‘‹๐‘‘ โ†’ ๐‘‹) be a ๐‘” โˆ’Banach frame

for ๐‘‹ with respect to ๐‘‹๐‘‘. Let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a ๐‘” โˆ’Banach Bessel sequence for

๐‘‹ with respect to ๐‘‹๐‘‘ . Let ๐‘‰: ๐‘‹๐‘‘ โ†’ ๐‘‹๐‘‘ be a bounded linear operator such that

๐‘‰({ฮ˜๐‘›(๐‘ฅ)}) = {ฮ›๐‘›(๐‘ฅ)}, ๐‘ฅ โˆˆ ๐‘‹. Then, there exists a reconstruction operator ๐‘ˆ: ๐‘‹๐‘‘ โ†’

๐‘‹ such that ({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘ if and only if

there exists a constant ๐‘€ > 0 such that

โ€–{(ฮ›๐‘› โˆ’ ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐‘€โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

, ๐‘ฅ โˆˆ ๐‘‹.

Proof. Let ๐พ > 0 be a constant such that

โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐พโ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

Let ๐ดฮ› be a lower bound for the ๐‘” โˆ’Banach frame for ({ฮ›๐‘›}, ๐‘†). Then

๐ดฮ›โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘+ โ€–{(ฮ›๐‘› โˆ’ ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค (1 + ๐‘€)โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘.

Put ๐‘ˆ = ๐‘†๐‘‰, then ๐‘ˆ: ๐‘‹๐‘‘ โ†’ ๐‘‹ is a bounded linear operator such that ๐‘ˆ({ฮ˜๐‘›(๐‘ฅ)}) =

5140 Ghanshyam Singh Rathore and Tripti Mittal

๐‘ฅ, ๐‘ฅ โˆˆ ๐‘‹. Hence ({ฮ˜๐‘›}, ๐‘ˆ) is a ๐‘” โˆ’Banach frame for ๐‘‹ with respect to ๐‘‹๐‘‘.

Conversely, let ๐ดฮ›, ๐ตฮ›; ๐ดฮ˜, ๐ตฮ˜ be bounds for the ๐‘” โˆ’ Banach frames

({ฮ›๐‘›}, ๐‘†) and ({ฮ˜๐‘›}, ๐‘ˆ), respectively. Then

๐ดฮ›โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐ตฮ›โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹

and

๐ดฮ˜โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐ตฮ˜โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

Therefore

โ€–{(ฮ›๐‘› โˆ’ ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

+ โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

โ‰ค (๐ตฮ› + ๐ตฮ˜)โ€–๐‘ฅโ€–๐‘‹

โ‰ค ๐‘€โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘, ๐‘ฅ โˆˆ ๐‘‹,

where ๐‘€ =1

๐ดฮ˜(๐ตฮ› + ๐ตฮ˜).

5. STABILITY OF ๐‘ฎ โˆ’BANACH BESSEL SEQUENCES

In the following result, we show that ๐‘” โˆ’Banach Bessel sequences are stable under

small perturbation of given ๐‘” โˆ’Banach Bessel sequence.

Theorem 5.1. Let {ฮ›๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with

respect to ๐‘‹๐‘‘ and let {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) be such that {ฮ˜๐‘›(๐‘ฅ)} โˆˆ ๐‘‹๐‘‘, ๐‘ฅ โˆˆ ๐‘‹ . Then

{ฮ˜๐‘›} is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘, if there exist non-

negative constants ๐œ†, ๐œ‡ (๐œ‡ < 1) and ๐›ฟ such that

โ€–{(ฮ›๐‘› โˆ’ ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค ๐œ†โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

+ ๐œ‡โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘+ ๐›ฟโ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

Proof. Let ๐‘€ be the Bessel bound for the ๐‘” โˆ’Banach Bessel sequence {ฮ›๐‘›}. Then

โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘โ‰ค โ€–{ฮ›๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘

+ โ€–{(ฮ›๐‘› โˆ’ ฮ˜๐‘›)(๐‘ฅ)}โ€–๐‘‹๐‘‘

= (1 + ๐œ†)๐‘€โ€–๐‘ฅโ€–๐‘‹ + ๐œ‡โ€–{ฮ˜๐‘›(๐‘ฅ)}โ€–๐‘‹๐‘‘+ ๐›ฟโ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹

โ‰ค ((1 + ๐œ†)๐‘€ + ๐›ฟ

1 โˆ’ ๐œ‡) โ€–๐‘ฅโ€–๐‘‹ , ๐‘ฅ โˆˆ ๐‘‹.

Hence {ฮ˜๐‘›} โŠ‚ ๐”…(๐‘‹, ๐ป) is a ๐‘” โˆ’Banach Bessel sequence for ๐‘‹ with respect to ๐‘‹๐‘‘.

REFERENCES

On G-Banach Bessel Sequences in Banach Spaces 5141

[1] M.R. Abdollahpour, M.H. Faroughi and A. Rahimi: PG Frames in Banach

Spaces, Methods of Functional Analysis and Topology, 13(3)(2007), 201-210.

[2] Huai-Xin Cao, Lan Li, Qing-Jiang Chen and Guo-Xing Li: (p, Y)-operator

frames for a Banach space, J. Math. Anal. Appl., 347(2)(2008), 583-591.

[3] P. G. Casazza, D. Han and D. R. Larson: Frames for Banach spaces, Contem.

Math., 247 (1999), 149-182.

[4] O. Christensen: An introduction to Frames and Riesz Bases, Birkhauser, 2003.

[5] O. Christensen and Y. C. Eldar: Oblique dual frames with shift-invariant

spaces, Appl. Compt. Harm. Anal., 17(1)(2004), 48-68.

[6] Renu Chugh, S.K. Sharma and Shashank Goel: A note on g frame

sequences, Int. J. Pure and Appl. Mathematics, 70(6)(2011), 797-805.

[7] Renu Chugh, S.K. Sharma and Shashank Goel: Block Sequences and G-

Frames, Int. J. Wavelets, Multiresolution and Information Processing,

13(2)(2015), 1550009-1550018.

[8] Renu Chugh and Shashank Goel: On sum of G-frames in Hilbert spaces,

Jordanian Journal of Mathematics and Statistics(JJMS), 5(2)(2012), 115-124.

[9] Renu Chugh and Shashank Goel: On finite sum of G-frames and near exact G-

frames, Electronic J. Mathematical Anal. and Appl., 2(2)(2014), 73-80.

[10] R.R. Coifman and G. Weiss: Extensions of Hardy Spaces and their use in

Analysis, Bull. Amer. Math. Soc., 83(4)(1977), 569-645.

[11] I.Daubechies, A. Grossman and Y. Meyer: Painless non-orthogonal

expansions, J. Math. Phys., 27(1986), 1271โ€“1283.

[12] R.J. Duffin and A.C. Schaeffer: A class of non-harmonic Fourier series, Trans.

Amer. Math. Soc., 72(1952), 341โ€“366.

[13] Y. C. Eldar: Sampling with arbitrary sampling and reconstruction spaces and

oblique dual frame vectors, J. Fourier Anal. Appl., 9(1)(2003), 77-96.

[14] H. G. Feichtinger and K. H. Grรถchenig: A unified approach to atomic

decompositions via integrable group representations, Function spaces and

Applications, Lecture Notes in Mathematics, Vol. 1302 (1988), 52-73.

[15] M. Fornasier: Quasi-orthogonal decompositions of structured frames, J. Math.

Anal. Appl., 289(2004), 180โ€“199.

[16] K.H. Grรถchenig, Describing functions: Atomic decompositions versus frames,

Monatsh. fur Mathematik, 112(1991), 1-41.

[17] P.K. Jain, S. K. Kaushik and L. K. Vashisht: On Banach frames, Indian J. Pure

Appl. Math., 37(5)(2006), 265-272.

[18] P.K. Jain, S. K. Kaushik and L. K. Vashisht: On perturbation of Banach frames,

Int. J. Wavelets, Multiresolution and Information Processing, 4(3)(2006), 559-

565.

5142 Ghanshyam Singh Rathore and Tripti Mittal

[19] P.K. Jain, S. K. Kaushik and L. K. Vashisht: Bessel sequences and Banach

frames in Banach spaces, Bulletin of the Calcutta Mathematical Society,

98(1)(2006), 87-92.

[20] P.K. Jain, S. K. Kaushik and L. K. Vashisht: On stability of Banach frames,

Bull. Korean Math. Soc., 44(1) (2007), 73-81.

[21] S. Li and H. Ogawa: Pseudo-duals of frames with applications, Appl. Comp.

Harm. Anal., 11(2001), 289-304.

[22] A.Najati, M.H. Faroughi and A. Rahimi: G -frames and stability of G -frames

in Hilbert spaces, Methods of Functional Analysis and Topology, 14(3)(2008),

271โ€“286.

[23] G.S. Rathore and Tripti Mittal: On G-Banach frames, Poincare Journal of

Analysis and Applications(submitted).

[24] W. Sun: G-frame and g-Riesz base, J. Math. Anal. Appl., 322(1)(2006), 437โ€“

452.

[25] W. Sun: Stability of g frames, J. Math. Anal. Appl., 326(2)(2007), 858โ€“868.

top related