nucleosynthesis in classical novae & x-ray bursts jordi ... · 1e+0 1e+1 1e+2 1e+3 1e+4 14 n/...

Post on 20-Jul-2020

16 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dept. Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya&

Institut d’Estudis Espacials de Catalunya, Barcelona

Jordi JoséJordi José

NucleosynthesisNucleosynthesis in in ClassicalClassical NovaeNovae & X& X--RayRay BurstsBursts

I. Introduction: Classical Novae vs. X-Ray BurstsI. Introduction: Classical Novae vs. X-Ray Bursts

Thermonuclear runaways in the white dwarf/neutron star componentof close binary systems.

Thermonuclear runaways in the white dwarf/neutron star componentof close binary systems.

Classical Nova OutburstsClassicalClassical Nova Nova OutburstsOutbursts

Discovered more than 2.000 years ago... Observed in all wavelengths(but never detected so far in γ-rays)

Discovered more than 2.000 years ago... Observed in all wavelengths(but never detected so far in γ-rays)

CNe:Moderate rise times (<1 – 2 days):

8 – 18 magnitude increase in brigthnessLPeak ~ 104 Lo Recurrence time: ~ 104 – 105 yrFrequency: 30 ± 10 yr-1

Mass ejected: 10-4 – 10-5 Mo (102 – 103 km s-1)

CNeCNe::Moderate rise times (<1 – 2 days):

8 – 18 magnitude increase in brigthnessLPeak ~ 104 Lo Recurrence time: ~ 104 – 105 yrFrequency: 30 ± 10 yr-1

Mass ejected: 10-4 – 10-5 Mo (102 – 103 km s-1)

Pioneering TNR models: Starrfield et al. 1972; Prialnik, Shara, & Shaviv1978

Pioneering TNR models: Starrfield et al. 1972; Prialnik, Shara, & Shaviv1978

Type I X-Ray BurstsTypeType I XI X--RayRay BurstsBursts

First discovered in 1975 (Grindlay , Heise, et al. 1976) with the ANS(also Belian, Conner & Evans 1976: Vela satellites)

First discovered in 1975 (Grindlay , Heise, et al. 1976) with the ANS(also Belian, Conner & Evans 1976: Vela satellites)

XRBs [70 XRBs known]:Very fast rise times (< 2 – 10 sec)Ex: ~ 1039 ergs [in about 10 – 20 sec]Recurrence time: ~ hours – daysMass ejected: unlikely

XRBsXRBs [70 XRBs known]::Very fast rise times (< 2 – 10 sec)Ex: ~ 1039 ergs [in about 10 – 20 sec]Recurrence time: ~ hours – daysMass ejected: unlikely

Observations with OSO-8 (Swank et al. 1978) Identification of thecentral emitting source (4U 0614 +09) as a NS

Observations with OSO-8 (Swank et al. 1978) Identification of thecentral emitting source (4U 0614 +09) as a NS

First models: Woosley & Taam 1976; Maraschi & Cavalieri 1977; Joss 1977

First models: Woosley & Taam 1976; Maraschi & Cavalieri 1977; Joss 1977

II. Nova NucleosynthesisII. Nova II. Nova NucleosynthesisNucleosynthesis

~ 100 relevant isotopes (A<40) &a (few) hundred nuclear reactions(Tpeak ~ 100 – 400 MK)

“Novae as unique stellar explosions for which the nuclear physics input is/will be soon primarily based on experimental information”(José, Hernanz & Iliadis 2005)

~ 100 relevant isotopes (A<40) &a (few) hundred nuclear reactions(Tpeak ~ 100 – 400 MK)

“Novae as unique stellar explosions for which the nuclear physics input is/will be soon primarily based on experimental information”(José, Hernanz & Iliadis 2005)

Hydrodynamic nova models Mass ejection (~ 2 x 10-5 Mo)

Since Tpeak ~ (2 - 3) x 108 K Nuclear processed material

Which is the role of nova outbursts in theGalactic chemical puzzle?

Novae scarcely contribute to the Galactic abundances, but theycan be likely sites for the synthesis of individual nuclei withoverproduction factors, f = Xi / Xi, solar > 1000

Novae scarcely contribute to the Galactic abundances, but theycan be likely sites for the synthesis of individual nuclei withoverproduction factors, f = Xi / Xi, solar > 1000

Galactic nova rate: ~ 30 events.yr-1

Galaxy’s lifetime: ~ 1010 yrMean ejected mass per outburst: ~ 2 x 10-5 Mo

~ 6 x 106 Mo (~ 1/3000 of the Galacticdisk’s gas & dust component)

Triggering reaction: 12C(p,γ)13N 13N(β+)13C(p,γ)14N (cold CNO)As T increases: τ(p,γ)[13N] < τ(β+)[13N] 13N(p,γ)14O (hot CNO)

14N(p,γ)15O 16O(p,γ)17F

Sudden release of energy from the short-lived, β+-unstable nuclei 14, 15O, 17F (13N) powers the expansion and ejection stages

14, 15N, 17O (13C)

Triggering reaction: 12C(p,γ)13N 13N(β+)13C(p,γ)14N (cold CNO)As T increases: τ(p,γ)[13N] < τ(β+)[13N] 13N(p,γ)14O (hot CNO)

14N(p,γ)15O 16O(p,γ)17F

Sudden release of energy from the short-lived, β+-unstable nuclei 14, 15O, 17F (13N) powers the expansion and ejection stages

14, 15N, 17O (13C)

Two (main) types of explosions: CO vs. ONe White DwarfsTwoTwo ((mainmain) ) typestypes of of explosionsexplosions: CO vs. : CO vs. ONeONe WhiteWhite DwarfsDwarfs

• Core composition (outermost shells): - CO WDs (Salaris et al. 1996): X(12C)=X(16O) ~ 0.5- ONe WDs (Ritossa, García-Berro & Iben 1996):X(16O):X(20Ne):X(24Mg) = 10:6:1 (1.5:2.5:1

Arnett & Truran 1969)

• Core composition (outermost shells): - CO WDs (Salaris et al. 1996): X(12C)=X(16O) ~ 0.5- ONe WDs (Ritossa, García-Berro & Iben 1996):X(16O):X(20Ne):X(24Mg) = 10:6:1 (1.5:2.5:1

Arnett & Truran 1969)

Impact of the chemical stratification of WDs on the classification(CO vs. ONe) of classical novae: José et al. (2003), ApJL

Impact of the chemical stratification of WDs on the classification(CO vs. ONe) of classical novae: José et al. (2003), ApJL

1.15 Mo CO

TTpeakpeak

1.15 Mo ONe

TTpeakpeak

TTpeakpeak

1.35 Mo ONe

Endpoint of nova nucleosynthesisEndpoint of nova nucleosynthesis

30P(p,γ)31SJosé, Coc & Hernanz (2001)

Negligible contributionfrom any (n,γ) or (α,γ) reaction

D. Jenkins, this Conference

1.15 Mo CO

1.15 Mo ONe

1.35 Mo ONe

José & Hernanz (1998), ApJ

Models vs. Observations for Some Classical Nova SystemsModels vs. Observations for Some Classical Nova Systems

H He C N O Ne Na-Fe Z V693 CrA 1981

Vanlandingham et al. (1997) 0.25 0.43 0.025 0.055 0.068 0.17 0.058 0.32ONe3 (JH98) 0.30 0.20 0.051 0.045 0.15 0.18 0.065 0.50Andreä et al. (1994) 0.16 0.18 0.0078 0.14 0.21 0.26 0.030 0.66ONe4 (JH98) 0.12 0.13 0.049 0.051 0.28 0.26 0.10 0.75Williams et al. (1985) 0.29 0.32 0.0046 0.080 0.12 0.17 0.016 0.39ONe5 (JH98) 0.28 0.22 0.060 0.074 0.11 0.18 0.071 0.50

V1370 Aql 1982Andreä et al. (1994) 0.044 0.10 0.050 0.19 0.037 0.56 0.017 0.86ONe7 (JH98) 0.073 0.17 0.051 0.18 0.14 0.24 0.14 0.76Snijders et al. (1987) 0.053 0.088 0.035 0.14 0.051 0.52 0.11 0.86ONe7 (JH98) 0.073 0.17 0.051 0.18 0.14 0.24 0.14 0.76

PW Vul 1984Andreä et al. (1994) 0.47 0.23 0.073 0.14 0.083 0.0040 0.0048 0.30CO4 (JH98) 0.47 0.25 0.073 0.094 0.10 0.0036 0.0017 0.28

QU Vul 1984Austin et al. (1996) 0.36 0.19 ...... 0.071 0.19 0.18 0.0014 0.44ONe1 (JH98) 0.32 0.18 0.030 0.034 0.20 0.18 0.062 0.50

1E+0

1E+1

1E+2

1E+3

1E+4

14N

/15N

1E+0 1E+1 1E+2 1E+3 1E+412C/13C

Mainstream ~93%

A+B grains 4-5%

Nova grains (graphite)

Nova grains (SiC)

Z grains ~1%

Y grains ~1%

X grains ~1%

Solar

Sola

r

KJGM4C-311-6

KJGM4C-100-3

KJC112AF15bC-126-3

KFC1a-551

KFB1a-161

1E+0

1E+1

1E+2

1E+3

1E+4

14N

/15N

1E+0 1E+1 1E+2 1E+3 1E+412C/13C

Mainstream ~93%

A+B grains 4-5%

Nova grains (graphite)

Nova grains (SiC)

Z grains ~1%

Y grains ~1%

X grains ~1%

Solar

Sola

r

KJGM4C-311-6

KJGM4C-100-3

KJC112AF15bC-126-3

KFC1a-551

KFB1a-161

-400

-200

0

200δ2

9 Si/2

8 Si (

‰)

-200 0 200 400 600 800 1000 1200

δδδδ30Si/28Si (‰)

Mainstream

Y grains

X grains

A+B grains

Nova grains (Graphite)

Nova grains (SiC)

Z grains

Sola

r

Solar

AF15bC-126-3

AF15bB-429-3

KFC1a-551

KJGM4C-311-6

KJGM4C-100-3

-400

-200

0

200δ2

9 Si/2

8 Si (

‰)

-200 0 200 400 600 800 1000 1200

δδδδ30Si/28Si (‰)

Mainstream

Y grains

X grains

A+B grains

Nova grains (Graphite)

Nova grains (SiC)

Z grains

Sola

r

Solar

AF15bC-126-3

AF15bB-429-3

KFC1a-551

KJGM4C-311-6

KJGM4C-100-3

Five SiC and two graphite grains, whose isotopic ratios point towarda nova origin (Amari, Gao, Nittler, Zinner, José, Hernanz & Lewis. 2001; Amari 2002): low 12C/13C and 14N/15N ratios, high 30Si/28Si, and close-to-solar 29Si/28Si. 26Al/27Al and 22Ne/20Ne ratios have beendetermined for some of these grains, with values compatible withnova model predictions. (

Five SiC and two graphite grains, whose isotopic ratios point towarda nova origin (Amari, Gao, Nittler, Zinner, José, Hernanz & Lewis. 2001; Amari 2002): low 12C/13C and 14N/15N ratios, high 30Si/28Si, and close-to-solar 29Si/28Si. 26Al/27Al and 22Ne/20Ne ratios have beendetermined for some of these grains, with values compatible withnova model predictions. (

Supernovae

C stars?AGBs

Presolar Grains: Gifts from HeavenPresolarPresolar GrainsGrains: : GiftsGifts fromfrom HeavenHeaven

Main radioactive species synthesized during nova outbursts

* * *

14, 15O, 17F (13N): Expansion and ejection stages13N, 18F: Early gamma-ray emission (511 keV plus continuum)7Be, 22Na, 26Al: Gamma-ray lines

IsotopeIsotope LifetimeLifetime DisintegrationDisintegration NovaNova typetype17F 93 sec β+-decay CO & CO & ONeONe14O 102 sec β+-decay CO & CO & ONeONe15O 176 sec β+-decay CO & CO & ONeONe13N 862 sec β+-decay CO & CO & ONeONe18F 158 min β+-decay CO & CO & ONeONe7Be 77 day e--capture COCO

22Na 3.75 yr β+-decay ONeONe26Al 1.0 Myr β+-decay ONeONe

Nova Radioactivities: 18F, 22Na, 26AlNova Radioactivities: 1818F, F, 2222Na, Na, 2626AlAl

* Clayton & Hoyle (1974): potential role of 22Na for diagnosis ofnova outbursts

1.275 MeV

τ ~ 3.75 yr22Na 22Ne

* Iyudin et al. (1995): upper limit of 3.7 x 10-8 Mo of 22Na ejectedby any novae in the Galactic disk

Constraints on pre-existing theoretical models!

22Na22Na

22Na cumulative emission

1.15 Mo ONe

D= 1 kpc

Peak fluxes for the 1275 keV γ-ray line (22Na decay) might be detectable by near future gamma-ray satellites (i.e. INTEGRAL: d<0.5 kpc)

Peak fluxes for the 1275 keV γ-ray line (22Na decay) might be detectable by near future gamma-ray satellites (i.e. INTEGRAL: d<0.5 kpc)

Gómez-Gomar, Hernanz, José, & Isern (1998), MNRAS

Jean, Hernanz, Gómez-Gomar, & José (2000), MNRAS

21Na(p,γ)22Mg(β+)22Na* Main reaction paths: 20Ne(p,γ)21Na

21Na(β+)21Ne(p,γ)22Na

* Destruction channel: 22Na(p,γ)23Mg and 22Na(β+)22NeSynthesis of 22Na likely for ONe novae (Starrfield et al. 1985; José & Hernanz 1998)

* Nuclear uncertainties: 21Na(p,γ)22Mg22Na(p,γ)23Mg (José, Coc & Hernanz 1999)

uncertainties in the rates translated into afactor ∼ 3 uncertainty in the 22Na yields

Recent improvements: Jenkins et al. (2004): 22Na(p,γ)23MgBishop et al. (2003), D’Auria et al (2004): 21Na(p,γ)22Mg

Galactic 26Al related to young progenitorsSN II vs. WR stars: Diehl, 2004

26Al 26Mg* 26Mg1.809 MeV

τ ~ 1.04 Myr

COMPTEL measurements: map of the 1.809 MeVemission in the Galaxy(Diehl et al., A&A, 1995; Prantzos & Diehl, Ph. Rep. 1996)

26Al26Al

But 60Fe?

* Main reaction paths: 24Mg(p,γ)25Al(β+)25Mg(p,γ)26Alg

(Also some potential contribution from initial 20Ne or 23Na)

* Destruction channel: 26Alg (p,γ)27Si

* Nuclear uncertainties: 25Al(p,γ)26Si, 26Alg(p,γ)27Si (José, Coc &Hernanz 1999)

Most (all?) of the Galactic 26Al

X (26Al) N(ONe) Mej(Mo) Rnova(yr-1) M(26Al) = 0.4 ----------- ---------- ------------ --------------

2x10-3 0.25 2x10-5 30

X (26Al) N(ONe) Mej(Mo) Rnova(yr-1) M(26Al) = 0.4 ----------- ---------- ------------ --------------

2x10-3 0.25 2x10-5 30

Novae account for < 20% of the Galactic 26Al

* Starrfield, Truran, et al.:

* José, Hernanz, et al.:

C. Ruiz et al., PRL (2006), submitted

Main contributor to the prompt gamma-ray emission

Nuclear uncertainties: 18F(p,γ)19Ne, 18F(p,α)15O, 17O(p,γ)18F,17O(p,α)14N (Hernanz, José, Coc, Gómez-Gomar, Isern 1999;

Coc, Hernanz, José, Thibaud 2000)Recent improvements:De Séréville et al. (2003, 2005), Bardayan et al. (2003),

Kozub et al. (2004): 18F(p,α)15OFox et al. (2004), Chafa et al. (2005): 17O(p,α), 17O(p,γ)

18F decay (τ ~ 158 min) provides a source of gamma-ray emission at 511 keV and below (related to electron-positron annihilation). But! Uncertainty in the predicted fluxes (nuclear physics origin)

18F18F

Future improvements:•Nuclear physics [25Al(p,γ)26Si, 18F(p,α)15O, 30P(p,γ)31S]•Identification of more nova candidate grains (oxide grains)•High-resolution spectra: reliable abundance patterns•Observation of γ-rays: lines (478, 511, 1275 keV) and/or

continuum (down to 20-30 keV)•Multidimensional hydro simulations: mixing mechanism at

the core/envelope interface

III. Type I X-Ray BurstsIII. III. TypeType I XI X--RayRay BurstsBursts

Nucleosynthesis in X-Ray BurstsNucleosynthesisNucleosynthesis in Xin X--RayRay BurstsBursts

~ 300 – 500 relevant isotopes (A>100) & several thousand nuclear reactions (Tpeak > 1GK)

Nuclear physics input is primarilybased on theoretical models

~ 300 – 500 relevant isotopes (A>100) & several thousand nuclear reactions (Tpeak > 1GK)

Nuclear physics input is primarilybased on theoretical models

José & Moreno (2006), in preparation

Hydrodynamic 1-D simulationswith: * 478 isotopes (up to 108Te)* 2640 nuclear reactions

Hydrodynamic 1-D simulationswith: * 478 isotopes (up to 108Te)* 2640 nuclear reactions

Schatz et al. (2001)

Nuclear Physics inputsmeasurements along the rp-process path

lifetimes of the ‘waiting point’ nuclei under rp-process

knowledge of key reactions at the ‘waiting points’30S(α,p), 34Ar(α,p): Fisker et al. (2004) ]

-Mass-Effectiveconditions-Better[i.e.,

Nuclear Nuclear PhysicsPhysics inputsinputsmeasurements along the rp-process path

lifetimes of the ‘waiting point’ nuclei under rp-process

knowledge of key reactions at the ‘waiting points’30S(α,p), 34Ar(α,p): Fisker et al. (2004) ]

-Mass-Effectiveconditions-Better[i.e.,

New challenges: SuperburstsNew challenges: Superbursts

Strohmayer & Markwardt (2002)4U 1636 –53, RXTE

Strohmayer & Brown (2002)4U 1820 –30, RXTE

-First reported in 4U 1735 –44 (Cornelisse et al. 2000: BeppoSAX)-Superbursts last ~ 1000 times longer (2 –12 hrs), and release ~ 1000times more energy (1042 ergs) than ‘normal’ XRBs. [4U 1636 -53: τrec ~ 4.7 yrs? (Wijnands 2001)]

-First reported in 4U 1735 –44 (Cornelisse et al. 2000: BeppoSAX)-Superbursts last ~ 1000 times longer (2 –12 hrs), and release ~ 1000times more energy (1042 ergs) than ‘normal’ XRBs. [4U 1636 -53: τrec ~ 4.7 yrs? (Wijnands 2001)]

Reignition of the C-rich ashesfrom ‘normal’ type I XRBs?(Cumming & Bildsten 2001)

Recent progress*Koike et al. (2004), ApJ: nucleosynthesis on accreting NS (H to Bi;one-zone model)*Fisker, Thielemann & Wiescher (2004), ApJ: role of “waiting points” in double-peaked type I xrb light curves (H to Te; 298 isotopes; 1-D hydro)*Woosley et al. (2004), ApJ: (1300 isotopes; 1-D hydro)

RecentRecent progressprogress*Koike et al. (2004), ApJ: nucleosynthesis on accreting NS (H to Bi;one-zone model)*Fisker, Thielemann & Wiescher (2004), ApJ: role of “waiting points” in double-peaked type I xrb light curves (H to Te; 298 isotopes; 1-D hydro)*Woosley et al. (2004), ApJ: (1300 isotopes; 1-D hydro)

Woosley et al. (2004)

Woosley et al. (2004)

Effect of p-captures above56Ni (Hanawa et al. 1983)

Role of 15O(α,γ)19Ne on type I XRB light curves (Fisker et al. 2005, submitted/accepted?)

High-resolution spectra (Cottam, Paerels, & Mendez 2002)

t = 30 sec t = 60 sec

t = 120 sect = 90 sec

t = 150 sec

Zingale et al. (2001)

Forcada, García-Senz & José (NIC IX, 2006)

Future improvements:•Nuclear physics [Mass measurements; reaction rates & effective lifetimes of the ‘waiting point’ nuclei under rp-process conditions] RIA, GSI-FAIR, SPIRAL2...•High-resolution X-ray spectra•Multidimensial hydro simulations

Jordi JosJordi JosééNucleosynthesisNucleosynthesis in in

ClassicalClassical NovaeNovae & X& X--RayRayBurstsBursts

Nuclear Structure & Astrophysicswith Radioactive Beams

Rehovot, Israel, June 4-6, 2005

top related