nuclear power - wordpress.com · ap1000 •in february 2012, the first nuclear power plants in the...

Post on 28-May-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

NUCLEAR POWER

NEW NUCLEAR POWER

PLANTS IN 2012

AP1000

• IN FEBRUARY 2012, THE FIRST NUCLEAR POWER PLANTS IN THE US IN 35 YEARS WERE LICENSCED TO BEGIN CONSTRUCTION .

• TWO WESTINGHOUSE AP1000 NUCEAR REACTOR PRESSURIZED WATER POWER PLANTS ARE BEING CONSTRUCTED AT THE VOGLE SITE SOUTH OF ATLANTA, GEORGIA.

OBJECTIVE

• WE WILL DISCUSS THE EVOLUTION

OF THE AP1000 WITH EMPHASIS ON

THE IMPROVEMENTS IN PLANT

DESIGN.

Why Nuclear Power ?

• Greater fuel efficiency (energy release)

– Fossil fuel a few ev/ reaction

– Nuclear fuel 200 million ev/fission

No carbon emissions

No greenhouse gases

Baseline power for electricity grid

Plants capable of running 24hrs/day, 365 days/year for up to two years

Nearly unlimited fuel supply

Fission

• One neutron activates a Uranium 235 atom

• The activated U235 breaks apart (splits) releasing on average 2.7 new neutrons and 200mev of energy

• The neutrons bang around, slow down, some escape, and one neutron activates another U235 atom (Chain Reaction)

• The energy released heats the coolant

Basic Design

• PRESSURIZED WATER REACTOR POWER PLANT

REACTOR

STEAM GEN

COOLING SYSTEM

TURBINE

AP 1000 SPECIFICATIONS

• Produces 1154 MWe (net)

• Same Footprint as AP 600

• Reactor Power 3400 MWt

• Two Loop, Pressurized Water Reactor

Design

Safety Features

• Passive Emergency Cooling

• Aggressive Design Simplification

• Probabilistic Risk Assessment

• Passive Containment System

Sequence of Events

• AP 600 is designed with passive safety

features and simplified plant systems

• AP 600 is licensed by the NRC (1999)

• AP 600 is considered not competitive in

the US market at 4.1 to 4.6 cents/kwh

• AP 600 is scaled up to Ap1000 with cost

reduced (economies of scaling) to 3.0 to

3.5 cents/kwh

Sequence of Events (cont'd)

• AP 1000 Design Certified by the NRC in December of 2005

• NRC questioned containment building integrity during severe external events such as earthquakes, hurricanes, and airplane collisions

• In response, Westinghouse prepared a modified containment design

• NRC approved the amended design certification in September 2011

Sequence of Events (cont'd)

• NRC approve the construction of two

AP 1000 plants at the Vogtle plant site

in Georgia on February 12, 2012

Design Simplification

The passive safety systems make

extensive use of gravity, natural

circulation, and other natural

phenomena to perform safety

related functions

Design Simplification

• Passive emergency reactor cooling: requires no pumps, or operator action during an accident

• Passive emergency containment cooling: requires no pumps, sprays, or operator action during an accident

• In fact there are no pumps, fans, diesel generators or any rotating machinery required for the safety systems

Design Simplification

• Since there is no rotating machinery in the safety related systems, there is no need for safety related AC power sources ( i.e. Diesel Generators)

• The Passive Cooling System uses multiple explosively operated and DC operated valves. No human operator action is necessary. Valves don’t rely on hydraulic or compressed air system

Design Simplifications

• Reduced Components needed:

50% fewer safety

related valves

35% fewer pumps

85% less control cable

80% less safety related

piping

Scaling: AP600 to AP1000

• The AP1000 design starts with the same footprint as the AP600. To allow or the increased power, the power plant and containment are scaled upward.

• The steam generators are taller, the containment building height is raised 25 ft, and the In-containment Refueling Water Storage Tank (IRWST) capacity is increased by increasing its height.

Scaling (cont’d)

• Only minor changes had to be made

throughout the plant to accommodate

the increase to 1000 MWe

• The concept of the original AP600

passive safety system design was

maintained

LOCA

• One of the important safety analysis performed is the Loss of Coolant Accident (LOCA)

• We can use the response to a LOCA type leak in the primary (reactor) coolant system to illustrate the operation of the emergency core cooling system and the containment cooling system

Emergency Core Cooling

• The first line of defense the event of a LOCA are the Core Make-up Tanks (CMT)

• As the reactor vessel depressurizes and the CMTs empty, the Accumulators begin draining

• After depressurization, the In-containment Refueling Water Storage Tank (IWRST) provides water to the reactor vessel to continue decay heat removal

Containment Cooling

• After one hour the IWRST begins to boil, sending steam into the steel containment shell

• The steam is condensed by the shell and water is drained back in to the IRWST

• The shell is cooled by natural air circulation in the containment building and by water drained from a roof tank

Construction

• Plant to be built using 270 pre-

manufactured modules, built in factories

and shipped to the site

• Construction planned to take 36 months

China

• Six units planned in Zhejiang, two

under construction for operation in

2013

• Six units planned in Shandong, two

under construction for operation in

2014

USA

Two units each planned at:

• Shearson Harris in North Carolina

• Lee III in South Carolina

• Summer in South Carolina

• Vogtle in Georgia (under construction)

• Levy County in Florida

• Turkey Point in Florida

• Bellefonte in Alabama

Accident Perspective

• The plant is designed in every detail so that accidents can’t happen

• Probabilistic Risk Assessments (PRA’s) are done at integral with the design to reduce failure rates to near zero

• For Example: The PRA for the AP1000 risk of core melt is calculated to be 2,4E-7/yr

Accident Analysis

• So nuclear reactor power plants are

designed so that the risk of an accident

is (near) zero.

• Then the consequences of the worst

kind of accident are analyzed anyway

• Then the safety systems are designed

to mitigate the consequences

assuming the accident occurs anyway

top related