natural frequencies of circular plate bending modes

Post on 27-Oct-2014

79 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

NATURAL FREQUENCIES OF CIRCULAR PLATE BENDING MODES

Revision A

By Tom Irvine

Email: tomirvine@aol.com

August 6, 2009

Introduction

The Rayleigh method is used in this tutorial to determine the fundamental bending

frequency. The method is taken from References 1 through 3. In addition, a Bessel

function solution is given in Appendices D and E.

A displacement function is assumed for the Rayleigh method which satisfies the

geometric boundary conditions. The assumed displacement function is substituted into

the strain and kinetic energy equations.

The Rayleigh method gives a natural frequency that is an upper limit of the true natural

frequency. The method would give the exact natural frequency if the true displacement

function were used. The true displacement function is called an eigenfunction.

Consider the circular plate in Figure 1.

Figure 1.

Let Z represent the out-of-plane displacement.

θ

r

Y

X

0

2

Table 1.

Appendix Topic

A Strain and kinetic energy

B Simply Supported Plate, Rayleigh Method

C Integral Table

D Solution of Differential Equation via Bessel Functions

E Simply Supported Plate, Bessel Function Solution

References

1. Dave Steinberg, Vibration Analysis for Electronic Equipment, Wiley-Interscience,

New York, 1988.

2. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, Wiley-

Interscience, New York, 1990.

3. Arthur W. Leissa, Vibration of Plates, NASA SP-160, National Aeronautics and

Space Administration, Washington D.C., 1969.

4. Jan Tuma, Engineering Mathematics Handbook, McGraw-Hill, New York, 1979.

5. L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 1967.

6. W. Soedel, Vibrations of Shells and Plates, Third Edition, Marcel Dekker, New York,

2004.

3

APPENDIX A

The total strain energy V of the plate is

( )

( ) θ

θ∂

∂µ−+

π

θ∂

∂+

∂µ−−

θ∂

∂+

∂+

∂= ∫ ∫

ddrr

2Z

r

1

r12

2

0

R

0 2

Z2

2r

1

r

Z

r

1

r2

Z212

2

2

Z2

2r

1

r

Z

r

1

2r

Z2

2

eDV

(A-1)

Note that the plate stiffness factor De is given by

µ−

=2112

3EheD (A-2)

where

E = elastic modulus

h = plate thickness

µ = Poisson's ratio

For a displacement which is symmetric about the center,

0),r(Z =θθ∂

∂ (A-3)

0),r(Z2

2

=θθ∂

∂ (A-4)

Substitute equations (A-3) and (A-4) into (A-1).

4

( )∫ ∫π

θ

∂µ−−

∂+

∂=

2

0

R

0ddrr

r

Z

r

1

r2

Z212

2

r

Z

r

1

2r

Z2

2

eDV

(A-5)

( )∫ ∫π

θ

∂µ+−+

∂+

∂+

∂=

2

0

R

0ddrr

r

Z

r

1

r2

Z222

2

r

Z

r

1

r

Z

r

1

2r

Z22

2

2r

Z2

2

eDV

(A-6)

The total strain energy equation for the symmetric case is thus

∫ ∫π

θ

∂µ+

∂+

∂=

2

0

R

0ddrr

r

Z

r

1

r2

Z22

2

r

Z

r

12

2r

Z2

2

eDV

(A-7)

The total kinetic energy T of the plate bending is given by

∫ ∫π

θΩρ

=2

0

R

0

22

ddrrZ2

hT (A-8)

where

ρ = mass per volume

Ω = angular natural frequency

5

APPENDIX B

Simply Supported Plate

Consider a circular plate which is simply supported around its circumference. The plate

has a radius a. The displacement perpendicular to the plate is Z. A polar coordinate

system is used with the origin at the plate's center.

Seek a displacement function that satisfies the geometric boundary conditions.

The geometric boundary conditions are

0),a(Z =θ (B-1)

0r

Z

ar2

2

=∂

=

(B-2)

The following function satisfies the geometric boundary conditions.

π=θ

a2

rcosZ),r(Z o (B-3)

The partial derivatives are

0),r(Z =θθ∂

∂ (B-4)

0),r(Z2

2

=θθ∂

∂ (B-5)

π

π−=θ

a2

rsin

a2Z),r(Z

ro (B-6)

π

π−=θ

a2

rcos

a2Z),r(Z

r

2

o2

2

(B-7)

6

The total kinetic energy T of the plate bending is given by

∫ ∫π

θ

πΩρ=

2

0

a

0

2

o

2

ddrra2

rcosZ

2

hT (B-8)

∫ ∫π

θ

π+

Ωρ=

2

0

a

0

2o

2

ddrra

rcos1

4

ZhT (B-9)

∫ ∫π

θ

π+

Ωρ=

2

0

a

0

2o

2

ddra

rcosrr

4

ZhT (B-10)

Evaluate equation (B-9) using the integral table in Appendix C

∫π

θ

π

π+

π

π+

Ωρ=

2

0

a

02

222o

2

da

rcos

a

a

rsin

ra

2

r

4

ZhT (B-11)

( ) ( )∫π

θ

π−π

π+

Ωρ=

2

0 2

2

2

222o

2

d0cosa

cosa

2

a

4

ZhT (B-12)

∫π

θ

π−

Ωρ=

2

0 2

222o

2

da2

2

a

4

ZhT (B-13)

[ ]∫π

θ−ππ

Ωρ=

2

0

2

2

22o

2

d48

aZhT (B-14)

[ ]∫π

θ−ππ

Ωρ=

2

0

2

2

22o

2

d48

aZhT (B-15)

[ ][ ]π−ππ

Ωρ= 24

8

aZhT 2

2

22o

2

(B-16)

7

[ ]44

aZhT 2

22o

2

−ππ

Ωρ= (B-17)

( ) 22

o

2 aZh4671.0T Ωρ= (B-18)

Again, the total strain energy for the symmetric case is

∫ ∫π

θ

∂µ+

∂+

∂=

2

0

R

0ddrr

r

Z

r

1

r2

Z22

2

r

Z

r

12

2r

Z2

2

eDV

(B-19)

∫ ∫

∫ ∫

∫ ∫

πθ

∂µ+

πθ

∂+

πθ

∂=

2

0

R

0ddrr

r

Z

r

1

r2

Z22

2

eD

2

0

R

0ddrr

2

r

Z

r

1

2

eD

2

0

R

0ddrr

2

2r

Z2

2

eDV

(B-20)

( )∫ ∫

∫ ∫

∫ ∫

π

θ

π

π

πµ+

π

θ

π

π+

π

θ

π

π+=

2

0

a

0ddrr

a2

rsin

a2

rcos

r

13

a222

oZ2

eD

2

0

a

0ddrr

a2

r2sin

2

a22r

12oZ

2

eD

2

0

a

0ddrr

a2

r2cos4

a2

2oZ

2

eDV

(B-21)

8

( )∫ ∫

∫ ∫

∫ ∫

π

π

π

θ

π

π

πµ+

θ

π

π+

θ

π

π+=

2

0

a

0

32o

2

0

a

0

22

2

2o

2

0

a

0

242

o

ddrra2

rsin

a2

rcos

r

1

a22

2

DZ

ddrra2

rsin

a2r

1

2

DZ

ddrra2

rcos

a22

DZV

(B-22)

( ) ∫ ∫

∫ ∫

∫ ∫

π

π

π

θ

π

π

πµ+

θ

π

π+

θ

π

π+=

2

0

a

0

32o

2

0

a

0

2

2

22o

2

0

a

0

242

o

ddrra2

rsin

a2

rcos

r

1

a22

2

DZ

ddrra2

rsin

r

1

a22

DZ

ddrra2

rcos

a22

DZV

(B-23)

∫ ∫

∫ ∫

∫ ∫

π

π

π

θ

π

πµ+

θ

π

π+

θ

π+

π+=

2

0

a

0

32o

2

0

a

0

222

o

2

0

a

0

42o

ddra

rsin

a22

DZ

ddra2

rsin

r

1

a22

DZ

ddrra

rcos1

2

1

a22

DZV

(B-24)

The first and third integrals are evaluating using the tables in Appendix C.

9

π

π

π

θ

π

π

πµ−

θ

π+

θ

π

π+

π

π+

π+=

2

0

a

0

32o

2

0

22o

2

0

a

02

2242o

da

rcos

a

a22

DZ

d8242.0a22

DZ

da

rcos

a

a

rsin

ra

2

r

2

1

a22

DZV

(B-25)

π

π

π

θ

π

πµ+

θ

π+

θ

π−

π+=

2

0

32o

2

0

22o

2

0 2

2242o

da2

a22

DZ

d8242.0a22

DZ

da2

2

a

2

1

a22

DZV

(B-26)

10

π

π

π

θ

πµ+

θ

π+

θ

π−

π+=

2

0

22o

2

0

22o

2

0 2

2242o

da22

DZ

d8242.0a22

DZ

da2

2

a

2

1

a22

DZV

(B-27)

( )

( ) ( )

π

πµ+

π

π+

π

π−

π+=

2a22

DZ

28242.0a22

DZ

2a2

2

a

2

1

a22

DZV

22o

22o

2

2242o

(B-28)

( )

πµπ+

ππ+

π−

ππ+=

22

o

22

o

2

2242

o

a2DZ

8242.0a2

DZ

a2

2

a

2

1

a2DZV

(B-29)

11

( )

πµ+

π+

π−

ππ+=

2

a28242.0

2

a22

2a2

2

2a

2

14

a2D2

oZV

(B-30)

( )

µ+

+

π−

ππ+=

22

2

224232

oa2

18242.0

a2

1a2

2

a

2

1

a2

1DZV

(B-31)

( )

µ+

+

π−

ππ+=

222

22

4

232o

a4

18242.0

a4

1a2

2

a

2

1

a16

1DZV

(B-32)

( )

µ+

+

π−

ππ+=

2222

232o

a4

18242.0

a4

12

2

1

2

1

a16

1DZV

(B-33)

( )

µ+

+

π−

π

π+=4

8242.04

1

2

2

2

1

2

1

16

122a

13D2oZV

(B-34)

( )

µ+

+

π−

π

π+=4

8242.04

12

2

1

32

1

a

1DZV

2

2

2

32o

(B-35)

( )

µ+

+

π

π+=4

8242.04

12

232

1

a

1DZV

2

2

32o

(B-36)

12

[ ] ( )

µ+

+−π

π+=4

8242.04

14

64

1

a

1DZV 2

2

32o

(B-37)

[ ] ( ) µ++−π

π+= 168242.0164a64

1DZV 2

2

32o

(B-38)

[ ] ( ) µ++−π

π+= 168242.0164a64

1DZV 2

2

32o

(B-39)

µ+

π+= 160568.19a64

1DZV

2

32o

(B-40)

µ+

π+= 25.02978.0a

1DZV

2

32o

(B-41)

Now equate the total kinetic energy with the total strain energy per Rayleigh's method.

[ ] µ+

π+=−ππ

Ωρ25.02978.0

a

1DZ4

4

aZh

2

32o

222

o2

(B-42)

[ ] µ+

π=−ππ

Ωρ25.02978.0

a

1D4

4

ah

2

3222

(B-43)

[ ] µ+

π=−ππ

Ωρ25.02978.0

a

1D4

4

h

4

322

(B-44)

[ ] µ+

π=−πΩρ

25.02978.0a

1D4

4

h

4

422

(B-45)

13

[ ] µ+

π=−πΩρ 25.02978.0a

4D4h

4

422 (B-46)

[ ] µ+

−πρ

π=Ω 25.02978.04h

1

a

4D

24

42 (B-47)

[ ] µ+

−πρ

π=Ω 1911.14h

1

a

1D

24

42 (B-48)

Let µ = 0.3, which is the typical Poisson's ratio.

[ ] 3.01911.14h

1

a

1D

24

42 +

−πρ

π=Ω (B-49)

[ ] 4911.14h

1

a

1D

24

42

−πρ

π=Ω (B-50)

[ ] 4911.14h

1

a

1D

24

42

−πρ

π=Ω (B-51)

[ ] 4911.14h

1

a

1D

24

4

−πρ

π=Ω (B-52)

h

D

a

9744.4

2 ρ=Ω (B-53)

The natural frequency fn is

Ωπ

=2

1fn (B-54)

h

eD

2a2

9744.4nf

ρπ= (B-55)

14

APPENDIX C

Integral Table

Equation (C-1) is taken from Reference 1.

2b

bxcos

b

bxsinxdxbxcosx +=∫ (C-1)

Now consider

dra

rcos1

r

1

2

1dr

a2

rsin

r

1 a

0

a

0

2∫∫

π−=

π (C-2)

Nondimensionalize,

a

rx

π= (C-3)

rxa

(C-4)

dra

dxπ

= (C-5)

drdxa

(C-6)

[ ] dxxcos1x

1

a2

adr

a2

rsin

r

1

0

a

0

2∫∫

π−

π

π=

π (C-7)

[ ] dxxcos1x

1

2

1dr

a2

rsin

r

1

0

a

0

2∫∫

π−=

π (C-8)

15

Recall the series

!12

x

!10

x

!8

x

!6

x

!4

x

!2

x1xcos

12108642

+−+−+−≈ (C-9)

dx!12

x

!10

x

!8

x

!6

x

!4

x

!2

x11

x

1

2

1dr

a2

rsin

r

1

0

12108642a

0

2 ∫∫π

+−+−+−−≈

π

(C-10)

dx!12

x

!10

x

!8

x

!6

x

!4

x

!2

x

x

1

2

1dr

a2

rsin

r

1

0

12108642a

0

2 ∫∫π

−+−+−≈

π

(C-11)

dx!12

x

!10

x

!8

x

!6

x

!4

x

!2

x

2

1dr

a2

rsin

r

1

0

1197531a

0

2 ∫∫π

−+−+−≈

π

(C-12)

π

⋅−

⋅+

⋅−

⋅+

⋅−

⋅≈

π∫

0

12108642a

0

2

!1212

x

!1010

x

!88

x

!66

x

!44

x

!22

x

2

1dr

a2

rsin

r

1

(C-13)

( )6483.12

1dr

a2

rsin

r

1a

0

2 ≈

π∫ (C-14)

8242.0dra2

rsin

r

1a

0

2 ≈

π∫ (C-15)

16

APPENDIX D

Solution of Differential Equation via Bessel Functions

The governing equation is taken from References 5 and 6.

0),r(Z4),r(Z4 =θβ−θ∇ (D-1)

eD

h24 ρω

=β (D-2)

4/1

eD

h2

ρω=β (D-2)

µ−

=2112

3EheD (D-3)

θ∂

∂+

∂+

θ∂

∂+

∂+

∂=∇∇=∇

2

2

2r

1

rr

1

2r

2

2

2

2r

1

rr

1

2r

2224 (D-4)

The governing equation may be written as

0),r(Z2222 =θβ−∇β+∇ (D-5)

Thus the equation is satisfy by

0),r(Z22 =θβ±∇ (D-6)

Separate variables

)()r(R),r(Z θΘ=θ (D-7)

17

By substitution

0)()r(R22

2

2r

1

rr

1

2r

2=θΘ

β+

θ∂

∂+

∂+

∂ (D-8)

0R2R2

2

2r

1R

rr

1R

2r

2=Θβ+

Θ

θ∂

∂+Θ

∂+Θ

∂ (D-9)

0R22d

2d

2r

R

dr

dR

r

1

2dr

R2d=Θβ+

θ

Θ+Θ+Θ (D-10)

Similarly,

0R22d

2d

2r

R

dr

dR

r

1

2dr

R2d=Θβ−

θ

Θ+Θ+Θ (D-11)

Thus,

0R22d

2d

2r

R

dr

dR

r

1

2dr

R2d=Θβ±

θ

Θ+Θ+Θ (D-12)

2d

2d

2r

RR2

dr

dR

r

1

2dr

R2d

θ

Θ−=Θβ±

Θ+Θ (D-13)

2d

2d

2r

12

dr

dR

rR

1

2dr

R2d

R

1

θ

Θ

Θ−=β±

+ (D-14)

2d

2d12r2

dr

dR

r

1

2dr

R2d

R

2r

θ

Θ

Θ−=β±

+ (D-15)

18

The equation can be satisfied if each expression is equal to the same constant .2k

2k2d

2d12r2

dr

dR

r

1

2dr

R2d

R

2r=

θ

Θ

Θ−=β±

+ (D-16)

Thus

2k2r2

dr

dR

r

1

2dr

R2d

R

2r=β±

+ (D-17)

0R2r

2k2

dr

dR

r

1

2dr

R2d=

−β±++ (D-18)

Define a new variable

β

β=ξ

rj

r (D-19)

β−

β=ξ

2r2

2r22 (D-20)

β−

β=

ξ2

2

2r

2 (D-21)

Chain rule

drd β=ξ (D-22)

dr

d

d

d

dr

d ξ

ξ= (D-23)

ξβ=

d

d

dr

d (D-24)

19

0R2r

2k

2r

2

d

dR

2r2d

R2d

2r

2=

ξ+

ξ

ξ+

ξ

ξ (D-25)

0R2k2

d

dR

2d

R2d2 =

−ξ+

ξξ+

ξξ (D-26)

0R2

2k1

d

dR1

2d

R2d=

ξ−+

ξξ+

ξ (D-27)

Equation (D-27) is Bessel’s equation of fractional order.

The solution for circular plates that are closed in the θ direction is

( ) ( ) ( ) ( )ξ+ξ+ξ+ξ=ξ nKGnYFnIDnJC)(R (D-28)

Equation (D-28) represents Bessel of the first and second kind and modified Bessel of the

first and second kind.

Both ( )ξnY and ( )ξnK are singular at ξ = 0.

Thus for a plate with no hole, F = G = 0.

( ) ( )ξ+ξ=ξ nIDnJC)(R (D-29)

Furthermore, from equation (D-16),

2k2d

2d1=

θ

Θ

Θ− (D-30)

02k2d

2d=Θ+

θ

Θ (D-31)

20

The solution for circular plates that are closed in the θ direction is

θ+θ=Θ ksinBkcosA , k = n = 0, 1, 2, 3, ….. (D-32)

Or equivalently

[ ])(kcosA φ−θ=Θ .. (D-33)

The total solution is thus

( ) ( ) [ ] )(kcosAnIDnJC),(Z φ−θξ+ξ=θξ (D-34)

Set the phase angle φ =0.

( ) ( ) )kcos(AnIDnJC),(Z θξ+ξ=θξ (D-35)

Set A =1. Note that the mass normalization will be performed using the C and D

coefficients.

( ) ( ) )kcos(nIDnJC),(Z θξ+ξ=θξ (D-36)

21

APPENDIX E

Simply Supported Plate, Bessel Function Solution

The boundary conditions are

0),a(Z =θ (E-1)

0rM = at r = a (E-2)

02

Z2=

θ∂

∂ at r = a (E-3)

Note that

θ∂

∂+

∂µ+

∂−=

2

Z2

2r

1

r

Z

r

1

2r

Z2DrM (E-4)

Boundary condition (E-3) requires that

∂µ+

∂−=

r

Z

r2r

Z2DrM at r = a (E-5)

)()r(R),r(Z θΘ=θ (E-6)

( ) ( )[ ] )kcos(rnIDrnJC),r(Z θβ+β=θ (E-7)

( ) ( )[ ] 0)kcos(anIDanJC),a(Z =θβ+β=θ (E-8)

( ) ( ) 0anIDanJC =β+β (E-9)

22

( ) ( )[ ]

( ) ( )[ ] a r at )kcos(rnIDrnJCrr

1D

)kcos(rnIDrnJC2r

2DrM

=

θβ+β

∂µ−

θβ+β

∂−=

(E-10)

( ) ( )

( ) ( ) a r at rnIdr

d

r

1DrnJ

dr

d

r

1C)kcos(ED

rnI2dr

2dDrnJ

2dr

2dC)kcos(EDrM

=

β+βθµ−

β+βθ−=

(E-11)

0arrM =

= (E-12)

( ) ( ) ( ) ( ) 0rIdr

d

a

1DrJ

dr

d

a

1CrI

dr

dDrJ

dr

dC nnn2

2

n2

2

=

β+βµ+

β+β , at r = a

(E-13)

( ) ( ) ( ) ( ) 0rIdr

d

arI

dr

dDrJ

dr

d

arJ

dr

dC nn2

2

nn2

2

=

β

µ+β+

β

µ+β , at r = a

(E-14)

Let

rβ=λ (E-15)

23

( ) ( ) ( ) ( ) 0Id

d

aI

d

dDJ

d

d

aJ

d

dC nn2

22

nn2

22 =

λ

λ

µβ+λ

λβ+

λ

λ

µβ+λ

λβ ,

at aβ=λ

(E-36)

( ) ( ) ( ) ( ) 0Id

d

aI

d

dDJ

d

d

aJ

d

dC nn2

2

nn2

2

=

λ

λ

µ+λ

λβ+

λ

λ

µ+λ

λβ ,

at aβ=λ

(E-37)

Recall equation (E-9).

( ) ( ) 0nIDnJC =λ+λ , at aβ=λ (E-38)

( ) ( )λ−=λ nJCnID , at aβ=λ (E-39)

( )( )λ

λ−=

nI

nJCD , at aβ=λ (E-40)

By substitution,

( ) ( )( )( )

( ) ( ) 0Id

d

aI

d

d

I

JCJ

d

d

aJ

d

dC nn2

2

n

nnn2

2

=

λ

λ

µ+λ

λβ

λ

λ−

λ

λ

µ+λ

λβ ,

at aβ=λ

(E-41)

( ) ( )( )( )

( ) 0)(Id

d

aI

d

d

I

JJ

d

d

aJ

d

dnn2

2

n

nnn2

2

=

λ

λ

µ+λ

λβ

λ

λ−

λ

λ

µ+λ

λβ , at aβ=λ

(E-42)

24

( )( ) ( )

( )( ) ( ) 0I

d

d

aI

d

d

I

1J

d

d

aJ

d

d

J

1nn2

2

nnn2

2

n=

λ

λ

µ+λ

λβ

λ−

λ

λ

µ+λ

λβ

λ ,

at aβ=λ

(E-43)

Note the following identities:

( ) ( ) ( ) ( ) ( )λλ

+λ+−=λλ

−λ−=λλ

nJn

1nJnJn

1nJnJd

d (E-44)

( ) ( ) ( )λλλ

+λ+λ

−=λλ

nJd

dn1nJ

d

dnJ

2d

2d (E-45)

( ) ( ) ( ) ( ) ( )

λ

λ+λ+−

λ+

λ+

λ

++λ−=λ

λnJ

n1nJ

n1nJ

1nnJnJ

2d

2d (E-46)

( ) ( ) ( ) ( ) ( )

λ

λ+λ+−

λ+

λ+

λ

++λ−=λ

λnJ

n1nJ

n1nJ

1nnJnJ

2d

2d (E-47)

( ) ( ) ( )λ+

λ+λ

λ+−=λ

λ1nJ

1nJ

2

2n1nJ

2d

2d (E-48)

25

Analyze the first term of equation (E-42).

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( )

( )( )

( )( ) λ

µ+

λ+−β+

λ

β−

µ

λ

λ+−=

λ

µ+

λ+−β+

λ

λ+µ−

λ

β

λ

λ+=

λ

λ+λ+−

λ

µ+

λ+

λβ+λ

λ+−β

λ=

λ

λ

µ+λ

λβ

λ+

a

n

2

2n1

anJ

1nJ

a

n

2

2n1

nJ

1nJ

anJ

1nJ

nJn

1nJnJ

1

a1nJ

1nJ

2

2n1

nJ

1

nJd

d

anJ

2d

2d

nJ

1

(E-49)

Consider the following identities:

( ) ( ) ( ) ( ) ( )λλ

+λ+=λλ

−λ−=λλ

nIn

1nInIn

1nInId

d (E-50)

( ) ( ) ( )λλλ

+λ+λ

=λλ

nId

dn1nI

d

dnI

2d

2d (E-51)

( ) ( ) ( ) ( ) ( )

λ

λ+λ+

λ+

λ+

λ

+−λ=λ

λnI

n1nI

n1nI

1nnInI

2d

2d (E-52)

( ) ( ) ( )λ+

λ−λ

λ+=λ

λ1nI

1nI

2

2n1nI

2d

2d (E-53)

26

Analyze the second term of equation (E-42).

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( )

( )( )

( )( ) λ

µ−

λ+β−

λ

λ+

λ

β−

µ−=

λ

µ−

λ+β−

λ

λ+µ−

λ

λ+λ

β=

λ

λ+λ+

λ

µ−

λ+

λβ−λ

λ+β

λ−=

λ

λ

µ+λ

λβ

λ−

a

n

2

2n1

nI

1nI

a

a

n

2

2n1

nI

1nI

anI

1nI

nIn

1nInI

1

a1nI

1nI

2

2n1

nI

1

nId

d

anI

2d

2d

nI

1

(E-54)

By substitution,

( )( )

( )( )

( )( )

( )( ) ,0I

d

d

aI

1I

d

d

I

1

Jd

d

aJ

1J

d

d

J

1

nn

n2

2

n

nn

n2

2

n

=

λ

λ

µ

λ−

λ

λλ−

λ

λ

µ

λ+

λ

λλ+

at aβ=λ

(E-55)

( )( )

( )( )

0a

n

2

2n1

nI

1nI

aa

n

2

2n1

anJ

1nJ=

λ

µ−

λ+β−

λ

λ+

λ

β−

µ−

λ

µ+

λ+−β+

λ

β−

µ

λ

λ+− ,

at aβ=λ

(E-56)

27

( )( )

( )( )

02nI

1nI

aanJ

1nJ=β−

λ

λ+

λ

β−

µ−

λ

β−

µ

λ

λ+− , at aβ=λ (E-57)

( )( )

( )( )

02nI

1nI

aanJ

1nJ=β+

λ

λ+

λ

β−

µ+

λ

β−

µ

λ

λ+ , at aβ=λ (E-58)

( )( )

( )( )

β−=λ

λ+

λ

β−

µ+

λ

β−

µ

λ

λ+ 2nI

1nI

aanJ

1nJ , at aβ=λ (E-59)

( )( )

( )( )

λ

β−

µ

β−=

λ

λ++λ

λ+

a

2

nI

1nI

nJ

1nJ , at aβ=λ (E-60)

( )( )

( )( )

µ

β−=

λ

λ++λ

λ+

a

1

a

2

nI

1nI

nJ

1nJ , at aβ=λ (E-61)

( )( )

( )( ) µ+−

β−=

λ

λ++λ

λ+1

a2

nI

1nI

nJ

1nJ , at aβ=λ (E-62)

( )( )

( )( ) µ+−

λ−=

λ

λ++λ

λ+1

2

nI

1nI

nJ

1nJ , at aβ=λ (E-63)

( )( )

( )( ) µ−

λ=

λ

λ++λ

λ+1

2

nI

1nI

nJ

1nJ , at aβ=λ (E-64)

The following form is better suited for numerical root-finding purposes.

( ) ( ) ( ) ( ) ( ) ( )[ ]λλµ−

λ=λλ+λλ ++ nn1nn1nn IJ

1

2IJJI , at aβ=λ (E-65)

28

The roots of equation (E-65) for 3.0=µ are

k n=0 n=1 n=2 n=3

0 4.9351 13.8982 25.6133 39.9573

1 29.9844 48.7391 70.1170 95.2930

2 74.9211 103.4057 134.4289 168.8374

3 138.7787 176.8456 218.2026 264.0849

The roots were determined using the secant method.

The fundamental natural frequency is thus

aβ=λ (E-66)

e

24

D

hρω=β (E-67)

4/1

e

2

D

ha

ρω=λ (E-68)

4e

42

ah

D

ρ

λ=ω (E-69)

h

D

a

e2

2

ρ

λ=ω (E-70)

h

D

a

4.9351 e2 ρ

=ω (E-71)

The mode shapes are defined by

( ) ( )[ ] )kcos(rIDrJC),r(Z nn θβ+β=θ (E-72)

29

Recall

( )( )λ

λ−=

n

n

I

JCD , at aβ=λ (E-73)

( )( )( )

( ) )kcos(rII

JCrJC),r(Z n

n

nn θ

λ

λ−+=θ (E-74)

( )( )( )

( ) )kcos(rII

JrJC),r(Z n

n

nn θ

λ

λ−=θ (E-75)

top related