molecular diffusion in liquids - ksu

Post on 06-Apr-2022

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MOLECULAR DIFFUSION IN LIQUIDS

For gases, 𝐷𝐴𝐡 β‰  𝑓(𝑐)

For liquid, 𝐷𝐴𝐡 = 𝑓(𝑐)

1. Equimolar Counter Diffusion in Liquids

For this case,

𝑁𝐴 = βˆ’π‘π΅

Therefore, the following equation,

𝑁𝐴 = βˆ’π‘π·π΄π΅

𝑑(π‘₯𝐴)

𝑑𝑧+

𝑐𝐴

𝑐(𝑁𝐴 + 𝑁𝐡)

leads to,

𝑁𝐴 = βˆ’π‘π·π΄π΅

𝑑(π‘₯𝐴)

𝑑𝑧+ 0

𝑁𝐴 =π·π΄π΅π‘π‘Žπ‘£(π‘₯𝐴1 βˆ’ π‘₯𝐴2)

(𝑧2 βˆ’ 𝑧1)=

𝐷𝐴𝐡(𝑐𝐴1 βˆ’ 𝑐𝐴2)

(𝑧2 βˆ’ 𝑧1)

where,

π‘π‘Žπ‘£ = (𝜌

𝑀)

π‘Žπ‘£= (

𝜌1

𝑀1+

𝜌2

𝑀2) 2⁄

2. Diffusion of A through non-diffusing B in liquid phase

𝑁𝐴 =𝐷𝐴𝐡

(𝑧2 βˆ’ 𝑧1)

𝑃

𝑅𝑇

𝑝𝐴1 βˆ’ 𝑝𝐴2

𝑝𝐡𝑀

can be rewritten as,

𝑁𝐴 =𝐷𝐴𝐡

(𝑧2 βˆ’ 𝑧1)π‘π‘Žπ‘£

π‘₯𝐴1 βˆ’ π‘₯𝐴2

π‘₯𝐡𝑀

π‘₯𝐡𝑀 =π‘₯𝐡2 βˆ’ π‘₯𝐡1

𝑙𝑛π‘₯𝐡2

π‘₯𝐡1

For dilute solutions (small concentration of A), π‘₯𝐡𝑀 β‰… 1. Therefore,

𝑁𝐴 =𝐷𝐴𝐡

(𝑧2 βˆ’ 𝑧1)(𝑐𝐴1 βˆ’ 𝑐𝐴2)

Diffusion Coefficients for Liquids

1. Experimental determination of liquid diffusivities

𝐷𝐴𝐡 = 𝑓(𝑐) 𝐷𝐴𝐡 β‰  𝐷𝐡𝐴

Dilute solution and relatively concentrated solution are placed in chambers on opposite sides of a porous membrane of sintered glass.

Diffusion length = 𝐾1𝛿, 𝐾1 > 1

Another solute with known diffusivity is used to determine the diffusion length. Then,

𝑁𝐴 =νœ€π·π΄π΅

𝐾1𝛿(𝑐 βˆ’ 𝑐′)

νœ€ is the fraction of the open area for diffusion across the membrane. For V=V’,

ln(𝑐0 βˆ’ 𝑐0

β€² )

(𝑐 βˆ’ 𝑐′)= (

2νœ€π΄

𝐾1𝛿𝑉) 𝐷𝐴𝐡𝑑

where, 𝑐0 is the initial concentration. Another solute (e.g. KCl) with known diffusivity

is used to determine the cell constant (2 𝐴

𝐾1𝛿𝑉)

2. Experimental liquid diffusivity data

Range 0.5 Γ— 10βˆ’9– 5 Γ— 10βˆ’9 π‘š2

𝑠

3. Prediction of Diffusivities in Liquids

For dilute solutes in liquids (Eq. 6.3-8 in C. J. Geankoplis):

𝐷𝐴𝐡 = 9.96 Γ— 10βˆ’16

𝑉𝐴1 3⁄

(𝑇) (1

πœ‡)

where, A is solute molecule present in low concentration in solvent B, 𝐷𝐴𝐡is the

diffusivity (m2/s), T is the absolute temperature (K), πœ‡ is the viscosity (PaΒ·s or

kg/(mΒ·s) ) and VA is the solute molar volume at its normal boiling point

(π‘š3 π‘˜π‘” π‘šπ‘œπ‘™β„ ). This equation give good predictions for very large un-hydrated and

spherical-like solute molecules of molecular weight more than 1000 or where VA>

0.5 π‘š3 π‘˜π‘” π‘šπ‘œπ‘™β„ in aqueous solution.

For smaller solute molar volume, the Wilke-Chang correlation can be used (Eq. 6.3-

9 in C. J. Geankoplis):

𝐷𝐴𝐡 = 1.173 Γ— 10βˆ’16(πœ‘π‘€π΅)1 2⁄ (𝑇

πœ‡π΅π‘‰π΄0.6)

where, A is solute molecule present in low concentration

in solvent B, 𝐷𝐴𝐡is the diffusivity (m2/s), T is the absolute

temperature (K), πœ‡ is the viscosity (PaΒ·s or kg/(mΒ·s) ) and

VA (see Table 6.3-2) is the solute molar volume at its

normal boiling point (π‘š3 π‘˜π‘” π‘šπ‘œπ‘™β„ ). πœ‘ is an association

parameter of the solvent.

Solvent 𝝋

Water 2.6

Methanol 1.9

Ethanol 1.5

Benzene 1.0

Ether 1.0

Heptane 1.0

Unassociated 1.0

top related