modeling of the alkaline impregnation of eucalyptus chips ... · modeling of the alkaline...

Post on 16-Jan-2020

17 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Inalbon Ma. Cristina, Zanuttini M., Marzocchi V.

ITC-FIQ-UNL

Mussati M. INGAR

Santa Fe, ARGENTINA

MODELING of the ALKALINE

IMPREGNATION

of EUCALYPTUS CHIPS.

REACTIONS and ION TRANSPORT

KRAFT

PROCESS

STEAMING IMPREGNATION

(105 – 120 ºC)

COOKING

(165 ºC)

Degree of impregnation

A proper impregnation leads to a more homogeneous pulp

A narrower kappa number distribution of the individual fibers can be obtained (Malkov et al. 2003).

Incomplete impregnation leads to:

Uncooked rejects (Gullichsen 1995).

Pulping yield (Gullichsen et al 1992, 1995).

Pulp strength (Gullichsen 1995).

Pulp bleachability (Malkov 2002).

Wood direction of interest

• The critical dimension for alkali

impregnation is the chip thickness

9 % NaOH/wood

95 ºC

30 min

Partially impregnated chip

Chip thickness: critical dimension

Tangential

Radial

transverse wood directions

Steaming stage and pressurized

impregnation : consequences

If wood has an acceptable permeability:

Steaming rapidly displaces the air from the chip.

Under these conditions, for eucalyptus wood, we

have shown that:

-Wood results almost saturated with liquid

-No evidence of alkali inside wood was found

(Inalbon y col. 2005).

A good steaming

+

pressurized impregnation

High liquid uptake

(Malkov et al 2001).

Liquor penetration

and reaction

Spent liquor

penetration

Chip

Liquid reaches the core of the chip

but alkali does not

Assumption

Impregnation (in thickness direction) is:

- Isothermal process

- A diffusion process in wood saturated

with liquid (penetration has finished)

Chemical reactions

• a) Deacetilation.

• b) Acid groups neutralization or

hydrolysis of their esters.

• c) Peeling.

The deacetilation is the main reaction:

It accounts for most of the alkali consumption

(Zanuttini et al, 2003).

It can be taken as indicative of the wood

swelling produced by the alkali treatment

(Zanuttini et.al, 1999).

Chemical reactions consequences

• Alkali consumption (5 – 6 % on wood)

• Chemical species

Mobile ions: a) Sodium +

b) Hydroxide - c) Acetate -

Fixed: a) Acetyl groups b) Non ionic acid groups c) Ionized acid groups -

For the modeling we need:

• Kinetics of reactions

• Diffusion properties of each ion

Kinetics of reactions

a) Deacetylation

For the eucalyptus wood under study we

made an experimental kinetic analysis :

Slices of wood (350 μm) were treated under

• different alkali concentrations

• at 20º, 45º and 90 ºC.

Deacetylation kinetics

• Obtained expression:

53.1)()( 09.2 OHCAcetylsCkAcetylsR

TR

EAk T exp.)(

k : Specific rate constant

CAcetyls : Acetyl concentration

COH - : Hydroxil concentration

The k–constant follows the Arrhenius law:

A : Arrhenius constant

E / R : Relative activation energy

T : Temperature (ºK)

Acid groups reactions

These reactions represent an additional alkali

consumption (1 % NaOH on wood)

Assumption:

We consider them as coupled to

deacetylation reaction (they have the same

reaction rate)

Acid groups neutralization

Ester hydrolysis

Ion diffusion coefficients

• The concept of effective capillary (Stone 1957)

allows considering for each ion

Diffusion

coefficient

in wood

Ion diffusion

coefficient in the

liquid medium Effective Capillary (the

same for all ions)

can be obtained

from literature Values Di

0 can be

interpolated in temperature

using the Nernst-Einstein

equation (ui : ion mobility)

Di = EC. Di0

Di0

Di0 = ui.R.T

Effective capillary

• We developed a method different from that

used by Stone (1957):

Method:

Slices of wood (400 m)

a low mass and

thermal diffusion

restriction

The evolution of electrical conductivity through slices,

was followed using laboratory conductivimeter

Electrical

conductivity Ion diffusion

EC determination

Slices were placed between electrodes of the

conductivimeter cell

The slice was considered as a series electrical circuit with the solution

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

7 8 9 10 11 12 13 14

pH

Eff

ec

tiv

e c

ap

illa

ry

20ºC-60 min

20ºC

Effective Capillary vs. pH

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

7 8 9 10 11 12 13 14

pH

Eff

ec

tiv

e c

ap

illa

ry

20ºC-60 min

45ºC-60 min

20ºC

45ºC

T

Effective Capillary vs. pH

Effective Capillary vs. pH

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

7 8 9 10 11 12 13 14

pH

Eff

ec

tiv

e c

ap

illa

ry

20ºC-60 min

45ºC-60 min

90ºC-60 min

90ºC

20ºC

45ºC

T

Effective Capillary vs. pH

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

7 8 9 10 11 12 13 14

pH

Eff

ec

tiv

e c

ap

illa

ry

20ºC-60 min

45ºC-60 min

90ºC-60 min

Stone, 25ºC, 24 hs

90ºC

20ºC

45ºC

T

0

0,05

0,1

0,15

0,2

0,25

0,3

0,0 1,0 2,0 3,0 4,0

Acetyl content (%)

Eff

ec

tiv

e c

ap

illa

ry

pH 12

20ºC

Effective Capillary vs. Acetyl content

0

0,05

0,1

0,15

0,2

0,25

0,3

0,0 1,0 2,0 3,0 4,0

Acetyl content (%)

Eff

ec

tiv

e c

ap

illa

ry

pH 12

pH 13

20ºC

Effective Capillary vs. Acetyl content

0

0,05

0,1

0,15

0,2

0,25

0,3

0,0 1,0 2,0 3,0 4,0

Acetyl content (%)

Eff

ec

tiv

e c

ap

illa

ry

pH 12

pH 13

pH 13.5

20ºC

Effective Capillary vs. Acetyl content

0

0,05

0,1

0,15

0,2

0,25

0,3

0,0 1,0 2,0 3,0 4,0

Acetyl content (%)

Eff

ec

tiv

e c

ap

illa

ry

pH 12

pH 13

pH 13.5

pH 14

20ºC

Effective Capillary vs. Acetyl content

EC depends on:

- Concentration of alkali

- Temperature

- Time

EC depends on:

- Temperature

- Deacetilation degree

An empiric equation of Capillary as a function of

acetyl content and temperature was used for

modeling

EC = f(Ac, T)

Ac : Acetyl content T : Temperature

Modeling

iiiii

ii R

xRT

cFDz

x

cD

xt

c

Diffusion Interaction

between ions

Chemical

reactions

For each chemical species we consider:

Where:

ci : Molar concentration of “ i “ specie

t : Time

x : Position from the external interphase

Di : Diffusion coefficient of “ i”

Differential equations system

zi : Charge number of “ i ”

F : Faraday constant

: Electric potential

Ri : Reaction rate

It involves 9 differential equations and 9 variables

in space and time:

6 chemical species concentrations

Deacetylation rate

Effective Capillary

Electrical potential

Results

Na+

Con

cen

trati

on

(m

ol/

l)

Position (cm)

Co= 0.5 M; T=110ºC; 15 minutes

Results

Con

cen

trati

on

(m

ol/

l)

Co= 0.5 M; T=110ºC; 15 minutes

Position (cm)

OH-

Na+

Results

Con

cen

trati

on

(m

ol/

l)

Co= 0.5 M; T=110ºC; 15 minutes

Position (cm)

Acetyls OH-

Na+

Results

Con

cen

trati

on

(m

ol/

l)

Co= 0.5 M; T=110ºC; 15 minutes

Position (cm)

Acetate

Acetyls OH-

Na+

Con

cen

trati

on

(m

ol/

l)

Co= 0.5 M; T=110ºC; 15 minutes

Position (cm)

AG

Acetate

Acetyls OH-

Na+

Results

nrAG

Results

Con

cen

trati

on

(m

ol/

l)

Co= 0.5 M; T=110ºC; 15 minutes

Position (cm)

AG

Acetate

Acetyls OH-

Na+

nrAG

Model vs. Experimental Data

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls exp

0.25N ; 105ºC; 5 minutes

Model vs. Experimental Data

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls

acetyls exp

0.25N ; 105ºC; 5 minutes

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls

acetyls exp

Na+ exp

Model vs. Experimental Data

0.25N ; 105ºC; 5 minutes

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls

Na+

acetyls exp

Na+ exp

Model vs. Experimental Data

0.25N ; 105ºC; 5 minutes

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls

Na+

acetyls exp

OH- exp

Na+ exp

Model vs. Experimental Data

0.25N ; 105ºC; 5 minutes

0,25N; 105ºC; 5 minutes

0

0,5

1

1,5

2

2,5

3

3,5

4

0 500 1000 1500 2000

Position (microns)

Co

nte

nt (%

on

woo

d)

acetyls

OH-

Na+

acetyls exp

OH- exp

Na+ exp

Model vs. Experimental Data

0.25N ; 105ºC; 5 minutes

C0: 0.25 N; 110ºC

1 min

Acetyl Groups

OH-

C0: 0.25 N; 110ºC

5 min

C0: 0.25 N; 110ºC

10 min

C0: 0.25 N; 110ºC

15 min

C0: 0.25 N; 110ºC

20 min

C0: 0.25 N; 110ºC

25 min

C0: 0.25 N; 110ºC

30 min

C0: 0.25 N; 110ºC

35 min

C0: 0.25 N; 110ºC

40 min

C0: 0.25 N; 110ºC

50 min

C0: 0.25 N; 110ºC

70 min

C0: 0.25 N; 110ºC

90 min

Application

For a given wood and set of conditions:

• A sequence like this can give a criterion

to take a decision regarding the extent of

impregnation stage

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0 10 20 30 40

Time (minutes)

Po

sit

ion

(c

m)

105ºC-0,25N

Front Position vs. Time

Chip

center

Inter-

phase

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0 10 20 30 40

Time (minutes)

Po

sit

ion

(c

m)

105ºC-0,25N

105ºC-0,5N

Front Position vs. Time

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0 10 20 30 40

Time (minutes)

Po

sit

ion

(c

m)

105ºC-0,25N

105ºC-0,5N

105ºC-1N

0,25 N1 N 0,5 N

Front Position vs. Time

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0 10 20 30 40

Time (minutes)

Po

sit

ion

(c

m) 105ºC-0,25N

105ºC-0,5N

105ºC-1N

110ºC-0,25N

110ºC-0,5N

110ºC-1N

Temperature

0,25 N1 N 0,5 N

Front Position vs. Time

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0 10 20 30 40

Time (minutes)

Po

sit

ion

(c

m)

105ºC-0,25N

105ºC-0,5N

105ºC-1N

110ºC-0,25N

110ºC-0,5N

110ºC-1N

120ºC-0,25N

120ºC-0,5N

120ºC-1N

Temperature

0,25 N1 N 0,5 N

Front Position vs. Time

Speed of impregnation

• Model shows that a change in alkali

concentration

from 0.25 M to 1.0 M

speeds up impregnation more than an

increase in temperature

from 105 to 120 ºC

Concluding Remarks (1)

This model allows the analysis of the effects

of impregnation variables such as :

external alkali concentration

temperature

time

chip thickness.

For a specific wood:

effective capillary

kinetic parameters

Should be experimentally verified before

the application of the model

Concluding Remarks (2)

Phenomenon: A reaction front is

established which moves to the interior of

the wood and separates an intact inner zone

from a reacted outer zone

The alkali profile differs from Sodium

concentration profile; the latter goes in the

front of the former

Concluding Remarks (3)

Besides the variables here analyzed, the model allows considering:

a) Additional ions such as sulfide, hydrosulfide, carbonate and others

b) Chip thickness distribution

c) Changes in external alkali concentration including different alkali profiling scenarios

Concluding Remarks (4)

The model is useful :

to understand the phenomenon

to analyze the effects of conditions

to define the degree of the impregnation in

an industrial process

• Thanks for your attention !

Acknowledgement

•ANPCYT

•CONICET

•UNL

top related