microseismic monitoring shale gas plays - denver spe spe society luncheon-april 20... ·...

Post on 25-Dec-2019

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Microseismic Monitoring Shale Gas Plays: 

Advances in the Understanding of Hydraulic Fracturing

20‐MAR‐16

HANNAH  CHITTENDEN

IntroductionEarly days:◦ Microseismic monitoring has been around since the early 1990s◦ It’s application to the oil and gas industry came about in the late 1990s◦ Analysis was based just on number of events and event locations

Microseismic Evolution:◦ New understandings and technologies led to “more than just dots”◦ New understandings of hydraulic fracturing challenged microseismic providers to provide more analysis

◦ Current market environment is pushing operators to get more from less – how can microseismics help?

We review the evolution of microseismic monitoring as it has been applied to hydraulic fracturing and how it has helped shape the current understanding of reservoirs and fracking.

Fracture Variability, Barnett Shale, 2000

SPE 77440

Role of Structure in Production

Days after treatment

Days after treatment

Complex Fracture Network Symmetric Fracture

Days after treatment

Pro

duct

ion

per d

ay

Pro

duct

ion

per d

ay

SPE 77440

Moving From Vertical to Horizontal Treatment Wells ‐ Detectability

5

Monitoring Options

6

Treatment WellObservation Well

Horizontal Array

Vertical Array

MicroseismicEvents

- Array geometry needs to be designed specifically for the project goals

- Adding multiple arrays:- Reduces detection bias- Provides wider coverage

of treatment wells- Improves location

accuracy- Provides opportunity for

more advanced analysis

Whip-Array™

Surface Arrays

Multiple Vertical or Horizontal arrays

Hybrid Solutions: Combining Surface + Downhole + lower Freq. Geophones

7

(Downhole Array

Dataset)

(Surface Array

Dataset)

FBA 4.5 Hz Geo. 15 Hz Geo.

 

Correct Event Radius based on ISM network 

(ft) 

Event Fault Radius based on saturated downhole data (ft) 

99  12 

101  11 

77  14 

87  15 

93  26 

82  19 

82  15 

Variations in Rupture Behaviour

Rough→ many small asperities breaking → high frequency energy signal

Smooth→ few large asperities breaking → lower frequency energy signal

Fracture surface roughness

Fluids -> decrease in contact area and lubrication

Proppant -> increase in contact area and change of stiffness

Most energetic asperity –

resistance to sliding

Introduction of fluids and proppant

More Than Just Dots…

Time seriesS wave window

Decay slope, -2

Corner Frequency, fc 1/rupture duration

Fourier Transform

noise, -1

Brunemodel

fit

Spectral level, 0

• Seismic Moment, M0• Moment Magnitude, MW• Stress Drop, 

0

• Fault  Radius, r• Stress Drop, fc

• Radiated Energy, ES• Apparent Stress, a

(f)

Using Source Parameters to Assess Treatment Plan

Stage: Stage A Stage BNumber of Events: 2416 1700Fracture Length (ft): 1225 1075Type of Sand Used: 70/140, 40/70 70/140, 40/70, 40/80

Crosslink (bbl) 28,000 11,500

Stage A Stage B

Elapsed Time (Beginning of Stage)

00:00:00 04:00:00 08:00:00 12:00:00

Sei

smic

Mom

ent (

N*m

)

0.0

2.0e+9

4.0e+9

6.0e+9

8.0e+9

1.0e+10

1.2e+10

1.4e+10

1.6e+1016-10 Stage 6 16-10 Stage 12

40/70 prop begins (Stage B)

40/70 prop begins (Stage A)

Bridging the Gap Using Microseismicity

Microseismic waveforms include information about the source of the failure and the rock conditions leading to failure.

+

+

+

——

——

——

——

——

——

——

—+

Time seriesS wave window

Decay slope, -2

Corner Frequency, fc 1/rupture duration

Fourier Transform

noise, -1

Brunemodel

fit

Spectral level, 0

Seismic Moment Tensor InversionModes of failure have three end‐members:◦ isotropic◦ double‐couple (DC) / shear◦ compensated linear vector dipole (CLVD)

Common modes of failure:◦ Tensile opening of a fracture (normal to tension axis)◦ Closure of a fracture (normal to pressure axis)◦ Slip on a fracture surface (DC) – resolvable solutions◦ Relative dimensions based on modified Brune Model (shear‐tensional)

crack opening crack closing DC / shear

Response to Treatment

A B C

A B C

D

D

Fine Grained Mesh Coarser Mesh Coarsest Mesh

Well landingMoment Tensors

Mid point of Perfs.

Openings slightly below perforation depth.

Closures above and below

Large opening components at depth. 

Enhanced Fluid Flow ‐ EFFOpening aperture is calculated based on the strain from the moment tensor factoring in the source dimensions.

Average individual fracture openings over a neighbourhood (nearest neighbour statistical approach) of fractures with similar orientation

Well LandingEnhanced Fluid Flow

Wells targeting Layer B show the least tendency to grow out of zone.

Layer BLayer A Layer C

Well A-1Well A-2Well A-3

Well B-1Well B-2Well B-3

Well C-1Well C-2Well C-3Well C-4

Stage SpacingMoment Tensors

• The overlapping events of stage 19 are recorded within 10 minutes from beginning of treatment and the overlapping events of stage 20 are recorded within 20 minutes at the end of treatment.

• Overlapping events from stage19 illustrates a crack-openingsource type plot though thestage 20 events are moreconsistent with crack-closuretype mechanisms.

Stimulation Response: Fractures

Changed Completion

Stimulation Response: Failure Types

Changed Completion

Thank You!!

Questions??

Hannah Chittenden, M.ScTeam Lead, Global Energy Services

office: 613.548.8287 ext. 265mobile: 613.329.7460

hannah.chittenden@esgsolutions.com

top related