local reverse time migration with vsp green’s functions

Post on 01-Jan-2016

39 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

PhD Defense. Local Reverse Time Migration with VSP Green’s Functions. Xiang Xiao UTAM, Univ. of Utah May 1, 2008. 99 pages. Outline. Introduction and overview SSP  VSP  SWP interferometric transform Local reverse time migration: horizontal reflector imaging - PowerPoint PPT Presentation

TRANSCRIPT

Local Reverse Time Migration with VSP Green’s Functions

Xiang Xiao

UTAM, Univ. of Utah

May 1, 2008

PhD Defense

99 pages

2

Outline

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging with transmitted P-to-S waves• Summary

Overview SSPVSP Local RTM Local RTM PS Summary

3

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging with transmitted P-to-S waves• Summary

4

Data

Tim

e

Offset

ModelD

epth

Offset

r(x) D(g|s)Forward modelling

InverseMigration

m(x)

Migration Image

Low subsalt resolution,Defocusing!

Overview SSPVSP Local RTM Local RTM PS Summary

5

Subsalt Imaging

s

x

G(x|g) g

G(x|s)

m(x) ~

~ G(x|s)

Model- based

G(x|g)*

Model-based

gsds

*

D(g|s)

D(g|s)dg

Overview SSPVSP Local RTM Local RTM PS Summary

6

Subsalt Imaging

s

x

G(x|g) g

G(x|s)

m(x) ~

~ G(x|s)

Forwarddirect

sds

*

D(g|s)

G(x|g)*

Backward reflection

g

D(g|s)dg

Errors in the overburden

and salt body velocity model

Defocusing

Overview SSPVSP Local RTM Local RTM PS Summary

7

Interferometric Imaging

s

x

G(x|g) G(x|s)

g

m(x) ~ s

~ ds G(x|s)

Data-based

G(x|g)* D(g|s)dg

Model-based

g

*

Overview SSPVSP Local RTM Local RTM PS Summary

8

Local Reverse Time Migration

s

x

G(x|g) g

G(x|s)

g’

G(x|s)= G(x|g’)* D(g’|s)dg’

Backward Direct wave

g’ Local VSP Green’s function

Overview SSPVSP Local RTM Local RTM PS Summary

9

Local Reverse Time Migration

s

x

G(x|g) g

G(x|s)

g’

Overview SSPVSP Local RTM Local RTM PS Summary

s

m(x) ~

~ G(x|s)

Backwardapprox

sds

* G(x|g)*

Backward reflection

g

D(g|s)dg

10

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging by transmitted P-to-S waves• Summary

11

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• SSP VSP SWP interferometric transform

– Motivation– Theory – Numerical Tests

• SEG/EAGE salt model• Double datuming

– Conclusions

12

I. Why we need more VSP?

Surface related statics

SSP VSP

•Twice OnceSeabedSeabed

SaltSalt

TargetTarget

Overburden velocity error

•Twice OnceRaypath

•Longer Shorter Attenuation

•More LessFrequency

Resolution

•Lower Higher

•Lower Higher

SSPVSP Motivation Theory Numerical Tests Conclusions

13

How to get more VSP?

dxG(B|A) ~

RVSP VSP

G(A|x)* G(B|x)

SSP

S2

~

S2

A

Bx

S1

RVSP

S2

A

Bx

S1

VSP

S2

A

Bx

S1

SSP

SSPVSP Motivation Theory Numerical Tests Conclusions

14

3D Application

3D VSP3D SSP

Naturally datuming !

3D RVSP

SSP + VSP RVSP !

Low fold

High fold !

SSPVSP Motivation Theory Numerical Tests Conclusions

15

X

SS

SeabedSeabed

TargetTarget

SaltSalt

SSP/RVSP apertureSSP/RVSP aperture

ggVSP apertureVSP aperture

Shot coverageShot coverageReceiver coverageReceiver coverage

SSPVSP Motivation Theory Numerical Tests Conclusions

16

Use it, or lost it…

3D RVSP

SSP + VSP RVSP !

High folds !

SaltSalt

Better image under the salt !

SSP, VSPWell log

Better Geologic interpretation !

SSPVSP Motivation Theory Numerical Tests Conclusions

17

What is the benefit ?

– Higher fold virtual RVSP data are obtained;– Sources are closer to the target;

SSP + VSP RVSP

SaltSalt

– No velocity model is needed;– Multi-arrival are considered;

SSPVSP Motivation Theory Numerical Tests Conclusions

18

How to skip overburden?

dxG(g|g’) ~

SWP VSP

G(g’|s)* G(g|s)

VSP

S~

gg’

s

VSP

gg’

s

VSP

gg’

s

Virtual Source Gather

No velocity model is needed !

SSPVSP Motivation Theory Numerical Tests Conclusions

19

Application of VSPSWP transform:

gg’

s

Virtual Source Gather

Salt flank imaging

P and S wave checkshot

Sediment imaging

Multiple/teleseismic imaging

4D Reservoir monitoring

Shear wave splitting and crack orientation

Seismic while drilling

……

Application

SSPVSP Motivation Theory Numerical Tests Conclusions

20

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• SSP VSP SWP interferometric transform

– Motivation– Theory – Numerical Tests

• SEG/EAGE model• Double datuming

– Conclusions

21

P-wave velocity model0

Dep

th (

m)

-7850 7850Offset (m)

Velocity (m/s)4500

15003600

SEG/EAGE Salt Model

SSPVSP Motivation Theory Numerical Tests Conclusions

22

P-wave velocity model0

Dep

th (

m)

-7850 7850Offset (m)

Velocity (m/s)4500

15003600

SSP Data Geometry…SSP

SSPVSP Motivation Theory Numerical Tests Conclusions

23

Data

Synthetic SSP CSG

Tim

e (s

)

0

6

Offset (m)-2000 2000

SSPVSP Motivation Theory Numerical Tests Conclusions

24

P-wave velocity model0

Dep

th (

m)

-7850 7850Offset (m)

Velocity (m/s)4500

15003600

VSP Geometry…

SSPVSP Motivation Theory Numerical Tests Conclusions

25

Data

Tim

e (s

)

Synthetic VSP CRG0

6

Offset (m)-7850 7850

Synthetic SSP CSG

Tim

e (s

)

0

6

Offset (m)-7850 7850

SSPVSP Motivation Theory Numerical Tests Conclusions

26

Traces comparisons

Am

pli

tud

e

Time (s)2 6

Synthetic RVSP CSG

Tim

e (s

)

0

6

Redatumed RVSP

Tim

e (s

)

0

6Offset (m)-7850 7850

1.4 kmComparison

Zoom area

27

Zoom View of TracesN

orm

aliz

ed A

mp

litu

de

Time (s) 5.53

Redatumed RVSP trace

Direct waves are cut

poor data folds

SSPVSP Motivation Theory Numerical Tests Conclusions

28

P-wave velocity model0

Dep

th (

m)

-7850 7850Offset (m)

Velocity (m/s)4500

15003600

Another Datuming Results

SSPVSP Motivation Theory Numerical Tests Conclusions

29

Synthetic RVSP CSGT

ime

(s)

0

6

Redatumed RVSP

Tim

e (s

)

0

6Offset (m)-2000 2000

Traces comparisons

Am

pli

tud

e

Time (s)2 6

2.4 kmComparison

30

No

rmal

ized

Am

pli

tud

e

Time (s)2.5 6

Zoom viewDirect waves are cut

poor data foldsRedatumed RVSP trace

SSPVSP Motivation Theory Numerical Tests Conclusions

31

P-wave velocity model0

Dep

th (

m)

-7850 7850Offset (m)

Velocity (m/s)4500

15003600

SEG/EAGE Salt Model

SSPVSP Motivation Theory Numerical Tests Conclusions

32

Shot 320 SSP primary WEM 20 Hz1.5

3.5

Dep

th (

km)

-4 4Offset (km)

Shot 320 RVSP WEM 20 Hz

Dep

th (

km)

1.5

3.5

33

33 shots SSP WEM 20 Hz

33shots VSP WEM 20 Hz

Dep

th (

km)

0

3.6Offset (km)-4 4

33 RVSP+VSP WEM 20 Hz

Offset (km)-4 4

SEG/EAGE salt model0

3.6

Dep

th (

km)

34

ss gg

s’s’

ss

s’s’

gg

s’s’

gg

s’s’ g’g’

gg

g’g’ s’s’ g’g’

SSPVSPSWP Transform

SSPVSP Motivation Theory Numerical Tests Conclusions

35

1% error in migration model

2% error in migration model

Dep

th (

km)

0

3.6Offset (km)-8 8

3% error in migration model

Offset (km)-8 8

645 shots SSP WEM0

3.6

Dep

th (

km)

36

1% error in migration model

2% error in migration model

Dep

th (

km)

0

3.6Offset (km)-8 8

3% error in migration model

Offset (km)-8 8

33 shots VSP WEM0

3.6

Dep

th (

km)

37

645 shots SSP primary WEM 20 Hz0

3.5

Dep

th (

km)

-8 8Offset (km)

Shot 320 BSSP WEM 20 Hz

Dep

th (

km)

1.5

3.5

38

645 shots SSP primary WEM 20 Hz0

3.5

Dep

th (

km)

-8 8Offset (km)

Shot 320 BSSP WEM 20 Hz

Dep

th (

km)

1.5

3.5

39

40

Conclusions

• Natural datuming, no velocity model is needed !

• Higher fold virtual VSP data are obtained !

• Source are closer to the target, less approximation.• Better resolution.

SSPVSP Motivation Theory Numerical Tests Conclusions

41

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging with transmitted P-to-S waves• Summary

42

Outline

Motivation Theory Numerical Tests ConclusionsLocal RTM

• Local reverse time migration: horizontal reflector imaging

– Motivation– Theory – Numerical Tests

• Sigsbee VSP Data Set• GOM VSP Data Set

– Conclusions

43

VSP Forward Modeling

s

x

g

D(g|s)

VSP data

Motivation Theory Numerical Tests ConclusionsLocal RTM

44

Reverse Time Migration

s

x

g

D(g|s)

VSP data

Motivation Theory Numerical Tests ConclusionsLocal RTM

45

Reverse Time Migration

s

x

G(x|g) g

G(x|s)

BackwardD(g|s)

Forwarddirect

m(x) ~ s

~ ds G(x|s)

Forward direct

G(x|g)* D(g|s)dg

Backward data

g

*

Motivation Theory Numerical Tests ConclusionsLocal RTM

46

Reverse Time Migration (RTM)

s

x

G(x|g) g

G(x|s)

BackwardD(g,s)

Forwarddirect

Forward direct:1) Salt velocity model is required, but hard to

build.2) Errors due to imperfect velocity models.

3) Need to estimate statics, anisotropy, etc.

Motivation Theory Numerical Tests ConclusionsLocal RTM

47

s

g

g’

x

VSPSWP Interferometry

Migrate virtual source gather D(g|g’) Limitations

1) s and x are at different sides of the well2) Image near vertical structures

Motivation Theory Numerical Tests ConclusionsLocal RTM

48

Outline

Motivation Theory Numerical Tests ConclusionsLocal RTM

• Local reverse time migration: horizontal reflector imaging

– Motivation– Theory – Numerical Tests

• Sigsbee VSP Data Set• GOM VSP Data Set

– Conclusions

49

Key Idea of Local RTM

(a) VSP data: P(g|s)=T(g|s)+R(g|s)

Transmission T(g|s)

s

g

Reflection R(g|s)

x

Motivation Theory Numerical Tests ConclusionsLocal RTM

50

(a) VSP data: P(g|s)=T(g|s)+R(g|s)

T(g|s)

s

gR(g|s)

x

s

(b) Backward reflection

R(g|s)g

x

R(x|s)= G(x|g)*R(g|s)g

(c) Backward transmission

T(g|s)

s

g

x

T(x|s)= G(x|g)*T(g|s)

g

(d) Crosscorrelation

m(x)= R(x|s)*T(x|s)s

Local VSP Green’s function

R(g|s)g

x

Key Idea of Local RTM

Motivation Theory Numerical Tests ConclusionsLocal RTM

51

(d1) Crosscorrelation imaging condition

m(x)= R(x|s)*T(x|s)s

R(g|s)g

x

Deconvolution Imaging Condition

Motivation Theory Numerical Tests ConclusionsLocal RTM

(d2) Deconvolution imaging condition

m(x)= R(x|s)*T(x|s)s

s

T(x|s)*T(x|s)

52

Benefits

• Target oriented!– Only a local velocity model near the well is

needed.– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

Motivation Theory Numerical Tests SummaryLocal RTM

53

Outline

Motivation Theory Numerical Tests ConclusionsLocal RTM

• Local reverse time migration: horizontal reflector imaging

– Motivation– Theory – Numerical Tests

• Sigsbee VSP Data Set• GOM VSP Data Set

– Conclusions

54

Sigsbee P-wave Velocity Model0

Dep

th (

km)

9.2

4500

1500

m/s

-12.5 12.5Offset (km)

279 shots

150 receivers

Motivation Theory Numerical Tests ConclusionsLocal RTM

55

Local Reverse Time Migration Results

4.6

9.2

Dep

th (

km)

-3 3Offset (km)

True modelMigration image

f = fault

f

d

d

(1)

(2)

(3)

(1) specular zone (2) diffraction zone(3) unreliable zone

d = diffractor

Motivation Theory Numerical Tests ConclusionsLocal RTM

56

Outline

Motivation Theory Numerical Tests ConclusionsLocal RTM

• Local reverse time migration: horizontal reflector imaging

– Motivation– Theory – Numerical Tests

• Sigsbee VSP Data Set• GOM VSP Data Set

– Conclusions

57

Dep

th

(m)

Offset (m)4878

0 1829

0

GOM VSP Well and Source LocationSource @150 m offset

2800 m

3200 m

Salt

82 receivers

Motivation Theory Numerical Tests ConclusionsLocal RTM

@600 m offset @1500 m offset

58

P-to-S ratio = 2.7

Velocity ProfileS WaveP Wave

Dep

th

(m)

0

45000 5000 0 5000

2800 m

3200 m

Salt

Incorrect velocity model

P-to-S ratio = 1.6

Velocity (m/s) Velocity (m/s)

Motivation Theory Numerical Tests ConclusionsLocal RTM

59

Z-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations

Motivation Theory Numerical Tests ConclusionsLocal RTM

60

X-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations Direct S

Motivation Theory Numerical Tests ConclusionsLocal RTM

61

Local Reverse Time Migration Result

(1)

(2)

(3)

(1) specular zone, (2) diffraction zone, (3) unreliable zone

3.3

Dep

th (

km)

3.9

0 100Offset (m)

39receivers

reflectivity

Motivation Theory Numerical Tests ConclusionsLocal RTM

62

150 m offset

3.3

3.9

0 100

Motivation Theory Numerical Tests ConclusionsLocal RTM

Dep

th (

km)

Offset (m) 0 100Offset (m)

Without deconvolution

With deconvolution

63

600 m offset

3.3

4.4

0 600

Motivation Theory Numerical Tests ConclusionsLocal RTM

Dep

th (

km)

Offset (m) 0 600Offset (m)

Without deconvolution

With deconvolution

64

1500 m offset

3.3

4.4

0 600

Motivation Theory Numerical Tests ConclusionsLocal RTM

Dep

th (

km)

Offset (m) 0 600Offset (m)

Without deconvolution

With deconvolution

65

Conclusions• Subsalt reflectors are accurately imaged

near the well with subsalt velocity model only.

• Diffractors are also imaged.

• GOM local RTM image agrees with the well reflectivity.

• Deconvolution imaging condition helps.

• Illuminates horizontal subsalt reflectors around a vertical well.

Motivation Theory Numerical Tests ConclusionsLocal RTM

66

Outline

Overview SSPVSP Local RTM Local RTM PS Summary

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging with transmitted P-to-S waves• Summary

67

Outline

Local RTM PS Motivation Theory Numerical Tests Summary

• Local reverse time migration: salt flank imaging by transmitted P-to-S waves

– Motivation– Theory – Numerical Tests

• Schlumberger VSP Data Set• GOM VSP Data Set

– Conclusions

68

Standard P-to-S Migration

x

s

m(x) ~ s

~ ds G(x|s)

Forward source P

P

S

g’

G(x|g’)*D(g’|s)dg’

Backward data S

g’

*

Converted wave VSP

D(g|s)

Local RTM PS Motivation Theory Numerical Tests Summary

Salt and overburdenvelocity model is needed

69

Interferometric P-to-S Migration

x

s

P

P

S

D(g|g’) ~

s

~ ds*

g’

g

D(g’|s) D(g|s)

m(x) ~ g’

~ dg’dgg

D(g|g’)G(x|g) G(x|g’)* *

Virtual source gather

Local RTM PS Motivation Theory Numerical Tests Summary

70

Kirchhoff P-to-S Migration

x

s

m(x) ~ s

~ ds

P

S

g’

e-itxg’ D(g’|s)dg’g’

Converted wave VSP

D(g|s)

Local RTM PS Motivation Theory Numerical Tests Summary

e-itsx

Pg

71

Reduce Time Migration

~( ~( tt + + tt )- )- ( ( tt + + tt ) )sxsx xxgg

pickpickpickpick

sxsx xxgg

errorerrortt sxsx xxg’g’=( =( tt + + tt )- )- ( ( tt + + tt ) )pickpickpickpick

sxsx xxg’g’

x

s

P

S

g

Converted wave VSP

D(g|s)

Local RTM PS Motivation Theory Numerical Tests

m(x) ~ s

~ ds e-itxg’ D(g’|s)dg’g’

e-i(tsx+terror)

Summary

Pg

72

Outline

Local RTM PS Motivation Theory Numerical Tests Summary

• Local reverse time migration: salt flank imaging by transmitted P-to-S waves

– Motivation– Theory – Numerical Tests

• Schlumberger VSP Data Set• GOM VSP Data Set

– Conclusions

73

x

s

P

P

S

m(x) ~ s

~ dsg’

G(x|g’)* D(g’,s) dg’

Backward P

G(x|g)* D(g,s)dg

Backward S

g

g’

g

*

Local Reverse Time Migration Theory

Local RTM PS Motivation Theory Numerical Tests Summary

74

Outline

Local RTM PS Motivation Theory Numerical Tests Summary

• Local reverse time migration: salt flank imaging by transmitted P-to-S waves

– Motivation– Theory – Numerical Tests

• Schlumberger VSP Data Set• GOM VSP Data Set

– Conclusions

75

Dep

th

(km

)

Offset (km)

10-12 12

0

Schlumberger 2D Isotropic Elastic Model

0

291 shots

287 receivers

Local RTM PS Motivation Theory Numerical Tests Summary

76

Dep

th

(km

)

10

0

Offset (km)-12 120

(a) Ray tracing direct P

(c) PPS events (d) Pp events

(b) PSS events

Dep

th

(km

)

10

0

Offset (km)-12 120

Aperture by Ray Tracing

Local RTM PS Motivation Theory Numerical Tests Summary

77

Direct P

PPS

PSS

Dep

th

(km

)

Time (s)

8

0 8

VSP CSG X-component

VSP CSG Z-component4

Dep

th

(km

)

8

4

Two-component VSP Synthetic Data Set

Local RTM PS Motivation Theory Numerical Tests Summary

78

4.5

2.0

km/s(a) P-wave submodelD

epth

(k

m)

8.7

6.0 2.5

1.0

km/s(b) S-wave submodel

4.5

2.0

km/s(c) P background model

Dep

th

(km

)

8.7

6.0

Offset (km)0 1.8

2.5

1.0

km/s(d) S background model

Offset (km)0 1.8

79

Dep

th

(km

)

8.7

6

Offset (km)0 1.8

(a) Standard Kirchhoff

(c) Interferometric migration (IM) (d) Local RTM

(b) Reduced-time migration (RM)

Dep

th

(km

)

8.7

6

Offset (km) 1.80

Comparison with Migration Methods

Local RTM PS Motivation Theory Numerical Tests Summary

80Offset (km)0 1.8

Local RTM without wavefield separationD

epth

(k

m)

8.7

6

81Offset (km)0 1.8

Local RTM with wavefield separationD

epth

(k

m)

8.7

6

82Offset (km)0 1.8

Local RTM using Z component onlyD

epth

(k

m)

8.7

6

83

Outline

Motivation Theory Numerical Tests

Schlumberger VSP Data Set GOM VSP Data Set

Conclusions

Local RTM PS Motivation Theory Numerical Tests Summary

84

Dep

th

(m)

Offset (m)4878

0 1829

0

GOM VSP Well and Source LocationSource @150 m offset

2800 m

3200 m

Salt

82 receivers

Local RTM PS Motivation Theory Numerical Tests Summary

@600 m offset @1500 m offset

85

P-to-S ratio = 2.7

Velocity ProfileS WaveP Wave

Dep

th

(m)

0

45000 5000 0 5000

2800 m

3200 m

Salt

Incorrect velocity model

P-to-S ratio = 1.6

Velocity (m/s) Velocity (m/s)

Local RTM PS Motivation Theory Numerical Tests Summary

86

Z-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations

Local RTM PS Motivation Theory Numerical Tests Summary

87

X-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations Direct S

Local RTM PS Motivation Theory Numerical Tests Summary

88

Processing WorkflowOriginal Data

Rotate components

Pick desired events

Median filtering

Migration (KM, RM, IM, RTM)

Local RTM PS Motivation Theory Numerical Tests Summary

89

Raypath Coverage

2000

4200

0 200

Dep

th

(m)

Migration of PPS

Salt

Offset (m)

39receivers

Local RTM PS Motivation Theory Numerical Tests Summary

90

Migration of PPS

Salt

RM IM

0 200 0 200

KM

2000

4200

0 200

Dep

th

(m)

Offset (m)Offset (m) Offset (m)

Local RTM PS Motivation Theory Numerical Tests Summary

91

Migration of PPS

Salt

IM, sediment flood Local RTM

0 200 0 200

RM

2000

4200

0 200

Dep

th

(m)

Offset (m)Offset (m) Offset (m)

Local RTM PS Motivation Theory Numerical Tests Summary

92

Dep

th

(km

)

3.9

2.9

Offset (m)0 100

(a) Without deconvolution (b) With deconvolution

Offset (m)0 100

150 m Offset LRM Image

93

600 m Offset LRM Image

Dep

th

(km

)

4.4

2.9

Offset (m)0 600

(a) Without deconvolution (b) With deconvolution

Offset (m)0 600

94

Dep

th

(km

)

4.4

2.9

Offset (m)0 600

(a) Without deconvolution (b) With deconvolution

Offset (m)0 600

1500 m Offset LRM Image

95

a) Synthetic b) 150 m offsetReduce time migration

c) 600 m offsetReduce time migration

Reduce Time Migration Image

Salt

2800 m

3200 m

Dep

th

(km

)

4.5

2.4

96

Summary

• Target oriented!– Only a local velocity model near the well is

needed.– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

Local RTM PS Motivation Theory Numerical Tests Summary

97

Summary

• Introduction and overview• SSP VSP SWP interferometric

transform• Local reverse time migration: horizontal

reflector imaging• Local reverse time migration: salt flank

imaging with transmitted P-to-S waves• Summary

Overview SSPVSP Local RTM Local RTM PS Summary

98

Acknowledgements

• Dr. Gerard Schuster and my committee members: Dr. Michael Zhdanov, Dr. Robert smith, Dr. Cari Johnson, Dr. Jianming Sheng for their advice and constructive criticism;

• Scott Leaney and Hornby Brian for their help on modeling;

99

Acknowledgements

• UTAM friends:– Jianhua Yu and Yonghe Sun on the research;– Jianming Sheng and Min Zhou for their experiences

on interferometric imaging;– Zhiyong Jiang and Ruiqing He for their help on

classes;– Travis Crosby and all UTAM students for their

cheerful attitude; All UTAM sponsors for their support;• Family

– My parents, brother and sister;

• Friends– Liyun Ma, Min Zhou, Jun Wang, Shuqian Dong,

Chaoxiong Ma, who encouraged me to continue on with my research.

100

Questions?

top related