lecture 8. turbulent premixed flames - lth · x.s. bai turbulent premixed flames results -...

Post on 18-Mar-2019

257 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

X.S. Bai Turbulent premixed Flames

Lecture 8. Turbulent Premixed Flames

X.S. Bai Turbulent premixed Flames

Content

• Feastures of turbulent premixed flames• Mechanisms of flame wrinkling• Regimes of turbulent premixed flames• Turbulent burning velocity• Propagation of turbulent flames in flow field• Turbulent premixed flame stabilization

X.S. Bai Turbulent premixed Flames

Experimental setup: Low swirl burner

Filtered Rayleigh Scattering setup

X.S. Bai Turbulent premixed Flames

Results - simultaneous PIV / PLIF

The combined PIV / OH-PLIF results showing the flame front structure and its position in the flow field.

X.S. Bai Turbulent premixed Flames

PLIF of fuel

X.S. Bai Turbulent premixed Flames

PLIF of fuel and OH

X.S. Bai Turbulent premixed Flames

Premixed jet flames

Douter

Dinner

methane/air(outer)

methane/air(inner)

Do=22mmDi=2.2mm

ceramicholder

X.S. Bai Turbulent premixed Flames

CH2O CHphoto

Vo=0.45 m/s, phi=1.17; Vin=11m/s, phi=1.1

Laminar flame

X.S. Bai Turbulent premixed FlamesVo=0.45 m/s, phi=1.17; Vin=120m/s, phi=1.0

CH2O CHphoto

Turbulent jet flame

X.S. Bai Turbulent premixed Flames

The shape of a turbulent premixed flame: a closer look

• Planar single pulse OH radical concentration, 50mm above the burner. Field size: 150x110 mm

• natural gas/air premixed flame measured by Buschmann et al (26th symp. Comb., pp.437, 1996)

• OH peak denotes the flame zone. Why flame zone is wrinkled? See next slide

X.S. Bai Turbulent premixed Flames

LeanH2/air mixture

door

Lean H2/air premixed flame in a room

X.S. Bai Turbulent premixed Flames

Lean H2/air premixed flame in a room

X.S. Bai Turbulent premixed Flames

Basic features of TPF

• TPF can be divided to three zones– Preheat zone– Reaction zone– Postflame zone

• The reaction zone in typical TPF is thin– CH layer; – fuel consumption layer

• The reaction zone is highly wrinkled– Due to turbulence eddies– Due to self-instability

• Hydrodynamic instability (Landau-Darrieus)• Diffusion-thermal instability• Bouyancy effect (Rayleigh-Taylor)

X.S. Bai Turbulent premixed Flames

Wrinking by turbulence eddies

X.S. Bai Turbulent premixed Flames

Flame – turbulence interaction andregimes turbulent premixed flames

X.S. Bai Turbulent premixed Flames

Different scales in turbulent premixed flames

• Flow scales– Mean flow scales

• Length (L), velocity (U), time (t=L/U)– integral scales

• length (l0), velocity (v0=u(l0)), time (τ0= l0 /v0), – Kolmogrov scales

• length (η), velocity (vη=u(η)), time (τη= η /vη),

• Flame scales– flame speed (SL) – flame thickness (δL)– time scale (tc)

• flame thickness/flame speed• chemical reaction time

– the flame structure may not be laminar

X.S. Bai Turbulent premixed Flames

Physical interpretation of length, time and velocity scales

Chemical reaction and flame scales

600

800

1000

1200

1400

1600

1800

2000

tem

pera

ture

(K

)

−2 −1 0 1 2flame coordinate (mm)

0

0.05

0.1

0.15

0.2

mol

e fr

actio

n

T

O2

CO2

CO

C3H

8

inner layer

preheat zone oxidation layer

X.S. Bai Turbulent premixed Flames

Physical interpretation of length, time and velocity scales

Mean flow scales

Flow time >> molecularmixing time

alpha

SL = U sin(alpha)

U

SL

X.S. Bai Turbulent premixed Flames

Physical interpretation of length, time and velocity scales

Turbulence eddy scales

X.S. Bai Turbulent premixed Flames

Physical interpretation of length, time and velocity scales

Turbulence eddy scales

Eddy size – lEddy velocity – ulEddy turn over time – teddy=l/ul

Molecular mixing time of Material of size lk – tmixing=lk

2/D=lk/uk

ul

l

ηη

= =

= =

1/ 2Re

: ,

eddy kl

mixing l k

k k

t ult u lnote l u u

X.S. Bai Turbulent premixed Flames

Physical interpretation of length, time and velocity scales

ul

l

δL

heat

inlet, otherboundaries

Energy transfer at a‘constant’ rate ε

X.S. Bai Turbulent premixed FlamesVo=0.45 m/s, phi=1.17; Vin=120m/s, phi=1.0

CH2O CHphoto

Turbulent jet flame

X.S. Bai Turbulent premixed Flames

PLIF images of formaldehyde (green) and CH (red) in laminar (a) and turbulent (b-f) flames with different gas supply speeds in the inner tube.

Turbulent jet flame

X.S. Bai Turbulent premixed Flames

Scale relationship

2/ 333

0 0 0 0

0 0

0 00

1/ 3

0 0 0 0 0

0 0

3/ 4 1/ 4 1/20 0 00 0 0

1 Re

Re ; Re ; Re ;

l

l l l

v vv l ll v

v v lv

vl l v l vv v l

l vv

η η

η

η

η

η

η

η η

τεη τ η η

ην η

ηη η ν

τη τ

⎛ ⎞⎟⎜ ⎟∝ ∝ ⇒ ∝ ∝ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

∝ ⇒ ∝

⎛ ⎞⎟⎜ ⎟∝ ∝ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

⇒ ∝ ∝ ∝

heat

inlet, otherboundaries

Energy transfer at a‘constant’ rate ε

X.S. Bai Turbulent premixed Flames

Non-dimensional numbersin turbulent premixed flames

0 00Relv lν

=

0 0

0

L

c L

l SDav

ττ δ

= =

2

c L L L L

L L L

v vDKaS S

η η

η

ητ δ δ δ δτ η δ ν ηη η

⎛ ⎞⎟⎜ ⎟= = = = ⎜ ⎟⎜ ⎟⎜⎝ ⎠Turbulent intensity

Karlovitz number

Damköhler number

Reynolds number

LSvTI 0=

X.S. Bai Turbulent premixed Flames

Non-dimensional numbers

( ) ( )

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛⇒

∝∝=

∝∝∝⋅∝∴

=

Ll

L

LLl

LLLL

l

lSv

Slv

Dlvlv

DSrrDrrDS

lv

δ

δν

νδδν

00

000000

2/12/1

00

logReloglog

Re

,/,

Re

Reynolds number

Constant Rel lines in the Borghi-diagram

X.S. Bai Turbulent premixed Flames

Borghi-diagram

Constant Rel lines

( )0 0log log Re logl

L L

v lS δ⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

Rel=1

Rel=100

Rel=104

X.S. Bai Turbulent premixed Flames

Non-dimensional numbers

0 0

0

0 0log( ) log( ) log( )

L

c L

L L

l SDav

l vDaS

ττ δ

δ

= =

= −

Damköhler number

X.S. Bai Turbulent premixed Flames

Borghi-diagram

Constant Da lines

Rel=1

0 0log( ) log( ) log( )L L

l vDaSδ

= −

Da=1

Da=100

Da=0.01

X.S. Bai Turbulent premixed Flames

Non-dimensional numbers

0 0

0 0

1/2 1/2 3/2

0

0 0

0

Re ( ) ( )

1 2log( ) log( ) log( )3 3

c L L L

L L L

L Ll

L L

L L

v v vl u u lKaS S l u l S u

u ul S l S

u l KaS

η η η

η

τ δ δ δτ η η ηδ δ

δ

′ ′= = = =

′ ′

′ ′= =

′= +

Karlovitz number

X.S. Bai Turbulent premixed Flames

Borghi-diagram

Constant Ka lines

Rel=1

Ka=1

Ka=0.01

Ka=100

01 2log( ) log( ) log( )3 3L L

u l KaS δ′= +

X.S. Bai Turbulent premixed Flames

Borghi-diagram

dark region: GT enginessmall circle: GE LM6000squares: VR-1

I: laminar flamesII: wrinkled flameletIII: corrugated flameletIV: thin reaction zoneV: distributed reactions

Ka=100

X.S. Bai Turbulent premixed Flames

Flamelet regimes

• The thickness of reaction zone + preheat zone is thinner than the Kolmogrov scale, i.e. δL<η

– Tranport of mass and heat between the reaction zone and preheat zone is by molecular mixing

– As a good approximation the local flame propagates at laminar flame speed and the thickness of the flame is laminar

2

, _

( ) ( )/

1

Kolmogrov L

reaction all layers L L

L

m u uDm D

η δ η ηδ δ ηδη<

∼ ∼

Unburnedburned

2

1c L L L L

L L L

v vDKaS S

η η

η

ητ δ δ δ δτ η δ ν ηη η

⎛ ⎞⎟⎜ ⎟= = = = <⎜ ⎟⎜ ⎟⎜⎝ ⎠

X.S. Bai Turbulent premixed Flames

PLIF images of formaldehyde (green) and CH (red) in laminar (a) and turbulent (b-f) flames with different gas supply speeds in the inner tube.

Turbulent jet flame

X.S. Bai Turbulent premixed Flames

Thin reaction zone regime

2

,

( ) ( ) ( )/ /

1

Kolmogrov L

reaction all layers L L L

L

m u u uDm D

η η δ η ηδ δ δ ηδη

Ω

>

∼ ∼ ∼

, _

1/ 2

( ) ( )/

0.1 0.1 1

kolmogrov L inn

reaction inner layer L in

inn L

m u S um D

Ka

η δ η ηδ δ ηδ δη η

<

∼ ∼

∼ ∼ ∼

Unburnedburned

2

,1 100c L L L L

L L L

v vDKa KaS S

η η

η

ητ δ δ δ δτ η δ ν ηη η

⎛ ⎞⎟⎜ ⎟= = = = < <⎜ ⎟⎜ ⎟⎜⎝ ⎠

Reactant pocketsMay not pass theInner layer ofThe reaction zone

X.S. Bai Turbulent premixed Flames

PLIF images of formaldehyde (green) and CH (red) in laminar (a) and turbulent (b-f) flames with different gas supply speeds in the inner tube.

Turbulent jet flame

X.S. Bai Turbulent premixed Flames

Distributed reaction zone regime

2

, _

( ) ( )/

1

Kolmogrov L

reaction all layers L L

L

m u uDm D

η δ η ηδ δ ηδη>

∼ ∼

, _

1/ 2

( ) ( )/

0.1 0.1 1

kolmogrov L inn

reaction inner layer L in

inn L

m u S um D

Ka

η δ η ηδ δ ηδ δη η

>

∼ ∼

∼ ∼ ∼

2

, 100c L L L L

L L L

v vDKa KaS S

η η

η

ητ δ δ δ δτ η δ ν ηη η

⎛ ⎞⎟⎜ ⎟= = = = >⎜ ⎟⎜ ⎟⎜⎝ ⎠

Unburnedburned Reactant pockets

May pass theReaction zone Without fullconsumption

X.S. Bai Turbulent premixed Flames

How does TPF propagate

• TPF propagates due to – Heat transfer to preheat zone to heat up the fuel/air to above

’cross-over’ temperature– Fuel/air mass transfer to the reaction zone to provide fuel/air

for combustion and releasing heat

• Transport of mass and heat between the reaction zone and the preheat zone

– can be different from laminar premixed flames– Depending on the thickness of the zones

X.S. Bai Turbulent premixed Flames

Turbulent burning velocity

X.S. Bai Turbulent premixed Flames

Turbulent burning velocity

• Also called turbulent flame speed• Defined as the propagation speed of the mean flame front, relative

to the unburned mixture• Is equal to the consumption rate of the unburned mixture (volume

flow per unit area of the mean flame front)

X.S. Bai Turbulent premixed Flames

Turbulent burning velocity: flamelet regime

• Also called turbulent flame speed• Defined as the propagation speed of the mean flame front, relative

to the unburned mixture• Is equal to the consumption rate of the unburned mixture (volume

flow per unit area of the mean flame front)

low-intensity, large scale

burned side

unburned side

AL

AMsT

η

sL

X.S. Bai Turbulent premixed Flames

Turbulent burning velocity: flamelet regime

Fall-offFlamelet theory

1

10 100−∼ / Lu S′

/T LS S

/ 1 /T L LS S u S′= +

X.S. Bai Turbulent premixed Flames

Turbulent burning velocity: thin reaction zone regime

Fall-offFlamelet theory

1

10 100−∼ / Lu S′

0

1/ 20/ / ' / ReT L tS S D D u ν =∼ ∼

/T LS S

X.S. Bai Turbulent premixed Flames

Burning velocities

• Laminar burning velocity– Depending on Molecular diffusion– Depending on Chemical reactions– Independent of flow

• Turbulent burning velocity– Depending on Molecular diffusion– Depending on Chemical reactions– Depending on flow

X.S. Bai Turbulent premixed Flames

Propagation of turbulent premixed flames

TG v G S Gt

∂+ ⋅∇ = ∇

ST

SL

LG v G S Gt

∂+ ⋅∇ = ∇

Propagation of the instantaneous flame front

Propagation of the mean flame front

X.S. Bai Turbulent premixed Flames

Mean planar flame in a tube

• Stable flame • Flashback• Blowoff• Quenching distance

USTUnburned x< 0 burned

x> 0

x= 0 (at t=0) x

( )Tx U S t= −

Flame position

X.S. Bai Turbulent premixed Flames

Mean conical flame

R r

U

G(x,r,t)=0

x

2 2

2( ) T

T

U Sx R r

S−

= −

U

ST

Rim stablizationLiftoffBlowoffflashback

X.S. Bai Turbulent premixed Flames

Flame stabilization

Ssgsv

x

Zst

Schematic of the conical burnerSchematic of the conical burner

TemperatureTemperature fieldfieldandand streamlinesstreamlines((whitewhite) ) fromfrom LESLES

X.S. Bai Turbulent premixed Flames

Flame stabilization

X.S. Bai Turbulent premixed Flames

AEV burner

ABB/Alstom EV burner

Between 1990 and 2005, all new gas turbines of ABB (later Alstom/Siemens) haveImplemented EV burners.

X.S. Bai Turbulent premixed Flames

AEV burner: flame stabilization by swirling flow

X.S. Bai Turbulent premixed Flames

Swirl combustor, dump combustor, bluff-body stabilization

top related