int. workshop on nuclear dynamics in hir and neutron stars beijing normal university, 9-14 july 2007...

Post on 20-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Int Workshop on Nuclear Dynamics in HIR and Neutron Stars Beijing Normal University 9-14 July 2007

outline bull observational data of neutron starsbull microscopic hadron EoS from pure baryon to composite matter (leptonsYKmacr) bull onset of transition to quark phasebull confinement models of quarksbull M-R diagram of NS from general relativity (TOV)

EoS of Nuclear Matter and Structure of Neutron Stars

preliminary remarks

nuclear matter is an homogeneous system made of rigid nucleons interacting via the nuclear force (surface and coulomb effects are neglected)

neutron stars are compact astrophysical objects mostly born after the explosion ofsupernovae They are supposed to be made of nuclear matter in their interior

But the way they were born the neutron stars in the inner core are not simply made of nucleons but of neutrons and protons in equilibrium with leptons (electrons and muons)and we should assume that at increasing density the threshold for the production of new particles

is reached hyperons kaons and quarks

Therefore we will deal with asymmetric nuclear matter

beta-equilibrium with electrons and muons p + emacr n + hyperonized matter n + n n + ( p + macr) at gt 2o

kaon condensation n p + Kmacr at gt 2-3o

transition to quark matter HP QP (uds) at ~ 6o

view of a neutron star

Crust pinningthermalemissionhellip ( Cao talk)

Interior

NK Glendenning Compact Stars Nuclear Physics Particle Physics Springer 2000

Facts about Neutron Stars

bull M ~ 1 to 2M0 ( M0=19981033g)bull R ~ 10 Km bull N obs Pulsars - 1500bull P gt 158 ms (630 Hz)bull B = 108 divide 1013 Gauss

Observed Masses three main families

PSR J0751+1807 M gt 21plusmn03 Mcopy

PSR 1913+16M = 144 Mcopy

J Lattimer

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

preliminary remarks

nuclear matter is an homogeneous system made of rigid nucleons interacting via the nuclear force (surface and coulomb effects are neglected)

neutron stars are compact astrophysical objects mostly born after the explosion ofsupernovae They are supposed to be made of nuclear matter in their interior

But the way they were born the neutron stars in the inner core are not simply made of nucleons but of neutrons and protons in equilibrium with leptons (electrons and muons)and we should assume that at increasing density the threshold for the production of new particles

is reached hyperons kaons and quarks

Therefore we will deal with asymmetric nuclear matter

beta-equilibrium with electrons and muons p + emacr n + hyperonized matter n + n n + ( p + macr) at gt 2o

kaon condensation n p + Kmacr at gt 2-3o

transition to quark matter HP QP (uds) at ~ 6o

view of a neutron star

Crust pinningthermalemissionhellip ( Cao talk)

Interior

NK Glendenning Compact Stars Nuclear Physics Particle Physics Springer 2000

Facts about Neutron Stars

bull M ~ 1 to 2M0 ( M0=19981033g)bull R ~ 10 Km bull N obs Pulsars - 1500bull P gt 158 ms (630 Hz)bull B = 108 divide 1013 Gauss

Observed Masses three main families

PSR J0751+1807 M gt 21plusmn03 Mcopy

PSR 1913+16M = 144 Mcopy

J Lattimer

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

view of a neutron star

Crust pinningthermalemissionhellip ( Cao talk)

Interior

NK Glendenning Compact Stars Nuclear Physics Particle Physics Springer 2000

Facts about Neutron Stars

bull M ~ 1 to 2M0 ( M0=19981033g)bull R ~ 10 Km bull N obs Pulsars - 1500bull P gt 158 ms (630 Hz)bull B = 108 divide 1013 Gauss

Observed Masses three main families

PSR J0751+1807 M gt 21plusmn03 Mcopy

PSR 1913+16M = 144 Mcopy

J Lattimer

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

NK Glendenning Compact Stars Nuclear Physics Particle Physics Springer 2000

Facts about Neutron Stars

bull M ~ 1 to 2M0 ( M0=19981033g)bull R ~ 10 Km bull N obs Pulsars - 1500bull P gt 158 ms (630 Hz)bull B = 108 divide 1013 Gauss

Observed Masses three main families

PSR J0751+1807 M gt 21plusmn03 Mcopy

PSR 1913+16M = 144 Mcopy

J Lattimer

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Observed Masses three main families

PSR J0751+1807 M gt 21plusmn03 Mcopy

PSR 1913+16M = 144 Mcopy

J Lattimer

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Yakovlev et al

Non superfluid Superfluid

Thermal evolution

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

p + e- n + e

n p + e- + e

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

due to the poor information from NS we need to make theoretical predictionsas much accurate as possible

for the EoS of nuclear matter the state of art is quite reasonable since thetheory of nuclear matter has undergone a long term development reaching a highDegree of sophistication

The description yperon matter is also satisfactory since we know the N-Y force even we still donrsquot know the Y-Y force (see Dang and Takatsuka talks)

the interaction N-K is less known and all predictions for the k condensationare still model-dependent (see Sun talk)

for the quark phase we have many theories still waiting constraints (Gao LiuMaruyama Huang Di Torotalks)

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Hadron EoS

from the NN experimental phase shifts two-body realistic interactions

from B-W nuclear mass formulasaturation properties

EA = -16 MeV = 17 fm-3

KA = 220 MeV (monopole)Esym =30 MeV

--empirical constrains --

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

SP

Coester et al Phys Rev C1 769 (1970)

Saturation curve within the BBG ldquogap choicerdquo (U(k)=0 if kgekF) and Av14

BBG ldquocontinuous choicerdquo

Similar results within the Variational Method Possible corrections many-body forces andor relativistic effects

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Nucleon-Nucleon Interaction Argonne v18

(Wiringa Stoks amp Schiavilla Phys Rev C51 38 (1995))

Neutron Matter

Symmetric Matter

Dependence on the many-body scheme

APR Variational (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Catania group BHF (Akmal Pandharipande

amp Ravenhall PRC 58 1804 (1998))

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Three Body Force

TBF provides the repulsion necessary for

1) saturation properties

2) stiff EoS massive NS

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

3bf is poorly known

A phenomenological model is built up from the saturation energy of nuclear matter (or density) and the binding energy of the triton

A microscopic model is based on a meson exchange model coupled with nucleonic excitations ((1232)N(1440)hellip) consistent with two body interaction

Chiral perturbation theory

Rijkijkijk VVV 2

model IX Urbana

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Carlson et al NP A401(1983) 59

P Grangersquo et al PR C40 (1989)

1040

Microscopic model

(a) excitation of a Δ resonance (attractive)(b) Roper R resonance (repulsive)

(a) excitation of (ΔR) resonances (b) excitation of a nucleon-antinucleon pair (relativistic effect on the EOS repulsive)

Zuo LombardoLejeuneMathiot

N P A706 418 (2002)

Effects of TBF

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

+ + N

+ + N

N

N

+ (-)

Meson-exchange Model of the two and three body Interaction

baryon exc ph exc from Dirac sea

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

+ +

+

N

N

+

N

N

+

+

+

N

N+

N+

(-)

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

BHF vs Dirac-BHFrelativistic effects

but DB misses other TBF effects

impressive overlap

N

BHF + ( ) = DBHF

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

EoS Symmetry energy

Improved saturation point asymp 018 fm-3 Symmetry energy at saturation Svasymp 32 MeV

Incompressibility at saturation K asymp 210 MeV

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Science 298 1592 (2002)

bull Transverse Flow Measurements in Au + Au collisions at EA=05 to 10 GeV

bull Pressure determined from simulations based on the Boltzmann-Uehling-Uhlenbeck transport theory

EoS of dense matter from HIC

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

from pure baryon to composite matter

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Composition of Neutron Stars -equilibrium neutral matter

e

e

p e n

p n

e

341

2sym

pF

EY

ck

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Neutron Stars Asymmetric and charge neutral beta-stable matter

Zhou BurgioLombardoZuo PR C69 018801 (2004)

Compact Stars in GTR Tolman-Oppenheimer-Volkoff Equations

Mtheor Mobs

Only stiff EoS is compatible with massive NS (21 Mcopy )

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Yperons

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

INCLUDING HYPERONS

Possible extension of the BBG theory

Few experimental data on NH interaction Nijmegen interaction (NSC89) (Maessen et al Phys Rev C40 2226 (1989))

Unknown HH interaction

Strong consequences for NS structure

See F Burgio et al Phys Rev C583688 (1998) ibid 61 055801 (2000)

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Hyperon onset at density close to 2-3 times the saturation value

Weak dependence on the adopted 3BF

Strong softening of the EoS no matter the nucleonic

TBFrsquos

Hyperon-hyperon interaction

n n n

n n p

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Same results by the Barcelona groupI Vidana et al Phys Rev C73 058801 (2006)

with NSC97 Nijmegen potential (NH + HH inter (Stoks amp Riken1999))

Appearance of baryonic strange matter not compatible with any NS

mass data

It demands for a stiffeningof the Equation of State

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

K condensationBethe-Brown ApJ 1995

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Kmacr - condensation

Proton strangenesscontent a3 ms [MeV]

(a) =-310 (b) =-230 (c) =-134

Chemical equilibrium

n harr p + l + l

n harr p + Kmacr l harr l + Kmacr

nuclear matter npeKhellip2

0( ) (1 2 ) ( )A A l KE K V u u x S u E E

K= e

TBF

ZuoALiZH Li Lombardo PRC 2004

ThorssonLattimer Prakash NPA 1994

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Chemical composition of NS with K-condensation

p

p

K-

K-

e-

e-

Av18 ( thin )

Av18+TBF ( thick )ZuoALiZH Li Lombardo PRC 2004

lsquonuclear matterrsquo starBethe amp BrownApJ 1995

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Critical density c0

2bf 2bf+3bfa3ms=-310 26 24 in competitiowith Yperons =-222 34 29 =-134 50 38

model parameter dependence

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Critical density (u=0)

2bf 2bf+3bf

a3ms=-310 uc=26 24

=-222 =34 29

=-134 = 50 38

K-condensation vs hyperonization

V18 (or Paris)+ TBF the two critical density could be comparable

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Kaon condensantion - neutrino trapping -

-trapping

free

K threshold model dependent

no kaons with kaons

with kaons

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

EoS with phase transitionto K-condensation

ThorssonLattimer Prakash NPA 1994

ZuoALiZH Li F Burgio Lombardo PRC 2006

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

ZuoALiZH Li F Burgio Lombardo PRC 2006

K-condensation in NS Mass-Radius plot

neutrino trapping

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Quark phase

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Structure of Hybrid Stars

at large ( 1 fm-3) hadron phase can coexist with deconfined quark phase and eventually completely dissolve into a pure quark core (hybrid star)

after the recent discovery of massive stars with Mgt2Mcopy (2005)

study of hybrid stars it has been addreesed to the evolutionary scenarios of NS birth

the low mass and high mass NS could belong to two different evolutionary scenarios

outlook

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

transition from Hadron to Quark Phase

~1fm3 dNN~ 1 fm

Since we have no unified theory which describes both confined and deconfined phases we use two separate EOS one with hadronic degrees of freedom (HP) one with quark degrees of freedom (QP)

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Which model for Quark Matter

Constraints from phenomenology on the general quark EOS

i) In symmetric nuclear matter one can expect a transition to quark matter at some density but it must be larger than at least 2-3 times normal nuclear matter density (no evidence from heavy ion reactions at intermediate

energy)

ii) Strongly asymmetric nuclear matter would favour the appearance of quark phase at lower density (no experiments so far at (N-Z)A gtgt 03)

iii) Strange matter stable against two-flavor matter

iv) The maximum mass of neutron stars must be larger than 144 solar mass (not true after 2005 new data with MMcopy gt 2 PSR

J0751+1807 )

Baym amp Chin PLB62 (1976)241Chapline and Nauenberg Nature 264 (1976)Keister amp Kisslinger PLB64(1976)117

c60

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Quark matter models Quark matter models MIT Bag Model MIT Bag Model Nambu-JonamdashLasinio (NJL)Nambu-JonamdashLasinio (NJL) Color Dielectric (CDM)Color Dielectric (CDM) DDM Model DDM Model

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

DDM model from deconfined phase to asymptotic freedom

013

DM Mq q

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

QM vs HM EoS in -equilibrium - crosspoints -

quark matter nb=(Nu+Nd+Ns)3Vnuclear matter = (N+Z) V

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Yperonized NM

Peng and Lombardo PP 2007

d rarr u + e + s rarr u + e + u + s harr d + u

Baryonic NM

Three flavor QM

p + e rarr n + n + n rarr n + n + n harr p + macr

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

hadron-to-quark phase transition

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP = QP THP = TQP

under the total charge neutrality condition

line pHP under H-charge neutrality is the EoS of pure hadron phase line pQP under Q-charge neutrality is the EoS of pure quark phase line intersecting the two pressure surfaces is the EoS of Hadron-Quark mixed phase

n = u + 2 d in he quark phase

hadron-to-quark phase transition

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

NP and QP charge neutrality gives a curve

Peng and Lombardo 2007

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

The value of the maximum mass lies in the range between 15 and 19 solar masses (gt144 M0)

The value of the maximum mass is mainly determined by the quark component of the neutron star and by the corresponding EOS

MIT DDM stable stars are in a quark + mixed + hadronic phase

CDM stable stars are only in pure quark phase

NJL instability at the quark onset

(hadron + mixed phase)

ldquoHybridrdquo starsldquoHybridrdquo stars

C Maieron et al Phys Rev D70 070416 (2004)F Burgio et al Phys Rev C66 025802 (2002)M Buballa et al PLB 562 153 (2003)GX Peng and U Lombardo PP 2007

Quark PhaseHadronic Phase

The structure of neutron star is strongly dependent on the EoS used for describing the quark phase

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

MDD

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Title

X Axis Title

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Two evolutionary scenarios for NS

Haensel exoct 2007 (Catania June 11-15)

NS born in core-collapse of massive stars (20-30 Mcopy ) are sufficiently dense and hot to produce eos-softening quark core resulting in Mmax = 15 M copy

NS coupled to a white dwarf companion could increase their mass by accretion in a long-lived binary sistem up to Mmax 2 M copy (no quark core)

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

PSR J0751+1807 M 2102 M

Two evolutionary branches of NS

pure hadron matter

hybrid neutron star

PSR 1913+16 M 14402 M

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Final comments

NS mass is a robust constraint of the nuclear matter EoSthe range 15-20 solar masses predicted by solving theTOVeqs is not trivial

But there are other constraints of the EoS to be investigated

Superfluidity of the crust (pinning) and of the interior (cooling)

Cooling mechanisms URCA opacity pairing

Magnetic field

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Conclusions

The EoS of nuclear matter is stiff according to a microscopic theory constrained by the experimental NN cross section

A stiff EoS is also supported by the NS observed masses (and other observables not discussed here) EoS of hadron phase including yperons is reasonably described

EoS of quark phase requires additional study (improving NJL model)

the low mass (Mlt15Mcopy) stars can be interpreted as hybrid stars if the critical density of deconfined phase is so low to hinder both yperons and kaons

the high mass (Mgt20Mcopy) is interpreted as pure hadron phase

anyhow the existence of two classes of neutron stars demands for the study of the evolution of neutron stars

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Thank you

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

under charge neutrality condition for the two phases - Maxwell construction -

hadron-to-quark phase transition

no Coulomb no surface

Gibbs equilibrium condition

pHP ( ne) = pQP (ne) HP=QP THP = TQP

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

hadron phase

p + e rarr n + n rarr p + e + n harr p + K

P + e = n

N + P = K

no trapping quark phase

u + e = d

d = s

d rarr u + e + s rarr u + e + u + s harr d + u

one (two) independent variables in each phase if charge neutrality is (not) required

d rarr u + e + s rarr u + e + u + s harr d + u

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Isospin dependence of critical density no charge neutrality

Skyrme-like EoS

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Kaon condensation in pure hadron phase with Skirme-like EoS( the scenario will not significantly change with the BHF+TBF EoS)

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

supernovae explosions (high temperature and isospin and density)

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

205 MeV is the threshold for hadron stability against two flavor quark matter

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

0 2 4 6 8 10 12 14 16 18 20

00

02

04

06

08

10

12

14

16

Y A

xis

Titl

e

X Axis Title

M-R plot for Hybrid Stars

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Sensitivity of MMΘ to constant B

MM 0

133 30 135 30 144 20 152 15

Alford amp Reddy2003

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

quark phase in beta-equilibrium udse-

u + e = d

d = s

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

DDM vs MIT-B models

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

charge conservationconservation

0c c c cp eHP K

0c c c c c cu s e KQP d

hadron phase

mixed phase

quark phase

(1 ) 0c cHPQP

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Phase transition from nuclear matter to SQM (skyrme-like EoS)

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

DDM vs MIT

P minimum in DDME=0 in the vacumm

Q matter in beta-equilibrium (charge neutrality)

Quark matter

hadronization(no quarks)

If D12 decreases the crosspointMoves to lower density

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

BaldoBurgioSchulze PRC 61 (2000)

Yperon-rich NS

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

MIT bag vs Color Dielectric Model

Yperonized Nuclear Matter

MaieronBaldoBurgioSchulzePhysRev D70 (2004)

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Neutron Star Structure

Clusters and light particle condensatesSuperfluid states

Coexisting liquid-gas phase

Nuclei far from stability line

Hypernuclear matter

K condensation

Quark matter

Hadron-to quark mixed phase

Color superconductivity

Collective excitations

helliphelliphelliphelliphelliphellip

extraordinary laboratory for studying states of nuclear matter

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Table of IsotopesNeutron skin

GR in neutron-rich nuclei

Spin-isospin modes (GT)

Super-heavy elements

nuclear compressibility symmetry energy spin-isospin

from exotic nuclei

Di Toro et al

Exotic HIC at intermediate energy

Light fragment production at Fermi energy

Unstable nucleus-nucleus systems

Isospin distillation

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

Mass-Radius Plot for a NS

from Tolman-Oppenheimer-Volkov Eq + EoS =P()

mass-radius plotall EoS are consistent with the observed max mass of NS and the central densities are also quite largebut we need a verylarge max mass when including hyperons

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

NS cooling via neutrino emission

p + e- n + e

n p + e- + e

(np) + p + e- (np) + n + e

(np) + n (np) + p + e- + e

direct URCA Yp gt

modified URCA

1

9

The EoS predicts1

9Ypgt gt 028 fm-3

central = 624 fm-3

Direct URCA processes are allowed to occur

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71

top related