hybrid heat pump solutions for ... - dtu research database[14] [13] 3 dtu mechanical engineering,...

Post on 28-Mar-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 22, 2021

Hybrid Heat Pump Solutions for Industrial Energy Savings

Jensen, Jonas Kjær

Publication date:2013

Link back to DTU Orbit

Citation (APA):Jensen, J. K. (Author). (2013). Hybrid Heat Pump Solutions for Industrial Energy Savings. Sound/Visualproduction (digital) http://www.natlab.dtu.dk/Energikonferencer/DTU_International_Energy_Conference_2013

Hybrid Heat Pump Solutions for Industrial EnergySavingsDTU International Energy ConferenceSeptember 10th-12th 2013

Jonas Kjær JensenPhD StudentThermal Energy Section

Agenda

• Introduction to the hybrid absorption compression heat pump• Advantages of zeotropic mixtures specifically NH3/H2O• Evaluation of important design parameters.• Prospect for high temperature development Tsupply <110◦C.• Conclusion & future work

2 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

The Hybrid Heat Pump

[1]

[2]

[3] [5]

[6]

[7]

[8]

[9]

[10]

[4]

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

𝑚 𝑣𝑎𝑝𝑜𝑢𝑟 𝑚 𝑙𝑒𝑎𝑛

𝑚 𝑟𝑖𝑐ℎ

𝑄 𝑎𝑏𝑠

𝑄 𝑑𝑒𝑠

𝑄 𝐼𝐻𝐸𝑋 𝑊 𝑐𝑜𝑚𝑝 𝑊 𝑝𝑢𝑚𝑝

[11] [12]

[13] [14]

3 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Vapor Pressure

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

180

200

220

R717→ ←R718

Temperature [◦C]

Vap

orPressure

[bar]

x=0.0x=0.1x=0.2x=0.3x=0.4x=0.5x=0.6x=0.7x=0.8x=0.9x=1.0Critical

4 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Vapor Pressure

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

180

200

220

R717→ ←R718

Temperature [◦C]

Vap

orPressure

[bar]

28[bar]

Temp. Range 63-230◦C

x=0.0x=0.1x=0.2x=0.3x=0.4x=0.5x=0.6x=0.7x=0.8x=0.9x=1.0Critical

5 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Vapor Pressure

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

180

200

220

R717→ ←R718

Temperature [◦C]

Vap

orPressure

[bar]

28[bar]

Temp. Range 63-230◦C

130[bar]

Temp. Range 155-330◦C

x=0.0x=0.1x=0.2x=0.3x=0.4x=0.5x=0.6x=0.7x=0.8x=0.9x=1.0Critical

6 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

Sink

Source

Tem

pera

ture

[°C

]

Heat Load [kW]

7 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

Sink

Source

Tem

pera

ture

[°C

]

Heat Load [kW]

Pure Refrigerant

Pure Refrigerant

8 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

Sink

Source

Tem

pera

ture

[°C

]

Heat Load [kW]

Pure Refrigerant

Zeotropic Mixture

Zeotropic Mixture

Pure Refrigerant

9 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

Sink

Source

Tem

pera

ture

[°C

]

Heat Load [kW]

Pure Refrigerant

Zeotropic Mixture

Zeotropic Mixture

Pure Refrigerant

Reduced ΔT => Reduced Entropy Generation

10 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:34 Page 10EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.9

11 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:34 Page 9EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.8

12 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:34 Page 8EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.7

13 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:34 Page 7EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.6

14 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:34 Page 6EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.5

15 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:33 Page 5EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.3

16 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:27:33 Page 4EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.3

17 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:23:52 Page 3EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.2

18 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Advantages of Zeotropic MixturesReduction of Entropy Generation

File:C:\Users\jkjje\Desktop\DTU IEC - 2014\Glide\fxr_opt.EES 10-09-2013 16:23:52 Page 2EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

0 20 40 60 80 10050

60

70

80

90

100

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

Q [kW]

T [

Co]

Absorber

x=0.1

19 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

The Hybrid Heat Pump: Design parameters xr & f

[1]

[2]

[3] [5]

[6]

[7]

[8]

[9]

[10]

[4]

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

𝑚 𝑣𝑎𝑝𝑜𝑢𝑟 𝑚 𝑙𝑒𝑎𝑛

𝑚 𝑟𝑖𝑐ℎ

𝑄 𝑎𝑏𝑠

𝑄 𝑑𝑒𝑠

𝑄 𝐼𝐻𝐸𝑋 𝑊 𝑐𝑜𝑚𝑝 𝑊 𝑝𝑢𝑚𝑝

[11] [12]

[13] [14]

20 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

Inputs and Assumptions

External InputsTsink,in = 80◦CTsink,out = 110◦CTsource,in = 80◦Cmsink = 1kg/smsource = 10kg/s

Internal Inputs∆Tpinch,abs = 5◦C∆Tpinch,des = 5◦Cηis,comp = 0.7

ηis,pump = 0.7

εIHEX 0.8

Pressure drops are neglected.

21 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

←R718 Cycle R717 Cycle→

Liquid

Cycle→

←VapourComp.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

22 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

0

10

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

A 1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

23 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

24 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

10

20

30

25 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

TH

[C]

200

400

600

26 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 30◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

TH

[C]

200

400

600

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

VHC [kJ/m3]

0

0.5

1

1.5

x 104

27 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 40◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

TH

[C]

200

400

600

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

VHC [kJ/m3]

0

0.5

1

1.5

x 104

28 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Influence of xr & f : Tsink,out = 110◦C, ∆Tlift = 50◦C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]

COP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]P

H [bar]

0

20

40

60

80

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PL [bar]

0

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

TH

[C]

200

400

600

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

PR [bar/bar]

10

20

30

0.1 0.3 0.5 0.7 0.90.1

0.3

0.5

0.7

0.9

xr [kg/kg]

f [−

]

VHC [kJ/m3]

0

0.5

1

1.5

x 104

29 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

Constraints corresponding to standard refrigeration components

Design ConstraintsCOP > 4[−] EconomicPH < 25[bar] Standard refrigeration equipmentPL > 1[bar] No entrainment of air from ambientV HC > 2[MJ/m3] Economic (Qabs/Vsuc,comp)TH < 160[◦C] Thermal stability of oil

30 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]

31 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>25[bar]

32 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>25[bar]

PL<1[bar]

33 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>25[bar]

PL<1[bar]

VHC<2[MJ/m3]

34 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>25[bar]

PL<1[bar]

VHC<2[MJ/m3]

T>160[°C]

35 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

Constraints corresponding to supercritical CO2 refrigeration components and newsynthetic oils

Design ConstraintsCOP > 4[−] EconomicPH < 130[bar] Standard refrigeration equipmentPL > 1[bar] No entrainment of air from ambientV HC > 4[MJ/m3] Economic (Qabs/Vsuc,comp)TH < 250[◦C] Thermal stability of oil

36 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]

37 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

38 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

39 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

40 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=110[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

41 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=120[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

42 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=130[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

43 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=140[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

44 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=150[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

45 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=160[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

46 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xr [kg/kg]

f [−

]Tout=170[◦C] Tlift=30[◦C]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

47 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

48 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=190[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

49 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: Tsink,out

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=200[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

50 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: ∆Tlift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

51 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: ∆Tlift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=35[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

52 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: ∆Tlift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=40[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

53 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: ∆Tlift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=45[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

54 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Working domain hybrid heat pumps: ∆Tlift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=50[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

55 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Future work• Heat transfer characteristics, influence of xr .• Identification of suitable oils.• Material compatibility with NH3/H2O should be investigated• Two-stage concepts should be evaluated, this could reduce compressor discharge

temperature and increase COP.• Thermoeconomic analysis and optimization should be applied to find cost efficient

designs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Tout=180[◦C] Tlift=30[◦C]

xr [kg/kg]

f [−

]

Possible design optionsCOP<4[−]P

H>130[bar]

PL<1[bar]

VHC<4[MJ/m3]

T>250[°C]

56 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Conclusion

• COP and design parameters are highly dependent on xr and f .• Standard refrigeration components can be used upto 110[◦C].• Supercritical CO2 components can be used upto 200[◦C].• ∆Tlift upto 45[◦C] can be attained.• Dominating constraint is the compressor discharge temperature.• Hence thermal stability of oil should be tested.• Case studies should be performed to show the feasibility of the hybrid heat pump

implementation.

57 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

Thank you for your attention.Questions?

58 DTU Mechanical Engineering, Technical University of Denmark DTU International Energy Conference 11.9.2013

top related