high-energy amplitudes in n=4 sym - uni-regensburg.demaa29312/conference/talks/balitsky.pdf · i....

Post on 01-Feb-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

High-energy amplitudes in N=4 SYM

I. Balitsky

JLAB & ODU

Regensburg 15 July 2014

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 1 / 50

Outline

Regge limit in a conformal theory.High-energy scattering and Wilson lines.Evolution equation for color dipoles.Leading order: BK equation.NLO BK kernel in N = 4.NLO amplitude in N = 4 SYMConclusions 1

Light-ray operators.“BFKL” representation of 4-point correlation function in N = 4SYM.“DGLAP” representation of 4-point correlation function.Anomalous dimensions from DGAP vs BFKL representations.Conclusions 2

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 2 / 50

Outline

Regge limit in a conformal theory.High-energy scattering and Wilson lines.Evolution equation for color dipoles.Leading order: BK equation.NLO BK kernel in N = 4.NLO amplitude in N = 4 SYMConclusions 1Light-ray operators.“BFKL” representation of 4-point correlation function in N = 4SYM.“DGLAP” representation of 4-point correlation function.Anomalous dimensions from DGAP vs BFKL representations.Conclusions 2

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 2 / 50

Conformal four-point amplitude

A(x, y, x′, y′) = (x− y)4(x′ − y′)4N2c 〈O(x)O†(y)O(x′)O†(y′)〉

O = TrZ2 (Z = 1√2(φ1 + iφ2)) - chiral primary operator

In a conformal theory the amplitude is a function of two conformal ratios

A = F(R,R′)

R =(x− y)2(x′ − y′)2

(x− x′)2(y− y′)2 , R′ =(x− y)2(x′ − y′)2

(x− y′)2(x′ − y)2

At large Nc

A(x, y, x′, y′) = A(λ; x, y, x′, y′) λ = g2Nc − ‘t Hooft coupling

Our goal is perturbative expansion and resummation of (λ ln s)n at large energiesin the next-to-leading approximation

(λ ln s)n(cLOn + cNLO

n λ)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 3 / 50

Conformal four-point amplitude

A(x, y, x′, y′) = (x− y)4(x′ − y′)4N2c 〈O(x)O†(y)O(x′)O†(y′)〉

O = TrZ2 (Z = 1√2(φ1 + iφ2)) - chiral primary operator

In a conformal theory the amplitude is a function of two conformal ratios

A = F(R,R′)

R =(x− y)2(x′ − y′)2

(x− x′)2(y− y′)2 , R′ =(x− y)2(x′ − y′)2

(x− y′)2(x′ − y)2

At large Nc

A(x, y, x′, y′) = A(λ; x, y, x′, y′) λ = g2Nc − ‘t Hooft coupling

Our goal is perturbative expansion and resummation of (λ ln s)n at large energiesin the next-to-leading approximation

(λ ln s)n(cLOn + cNLO

n λ)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 3 / 50

Regge limit in the coordinate space

Regge limit: x+ → ρx+, x′+ → ρx′+, y− → ρ′y−, y′− → ρ′y−− ρ, ρ′ →∞

z_

z+

z_

,y’_ y’_

x+ , x_ , y_y+

x’− , x’_

Full 4-dim conformal group: A = F(R, r)

R =(x− y)2(x′ − y′)2

(x− x′)2(y− y′)2 →ρ2ρ′2x+x′+y−y′−

(x− x′)2⊥(y− y′)2

⊥→ ∞

r =[(x− y)2(x′ − y′)2 − (x′ − y)2(x− y′)2]2

(x− x′)2(y− y′)2(x− y)2(x′ − y′)2

→[(x′ − y′)2

⊥x+y− + x′+y′−(x− y)2⊥ + x+y′−(x′ − y)2

⊥ + x′+y−(x− y′)2⊥]2

(x− x′)2⊥(y− y′)2

⊥x+x′+y−y′−

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 4 / 50

4-dim conformal group versus SL(2,C)

Regge limit: x+ → ρx+, x′+ → ρx′+, y− → ρ′y−, y′− → ρ′y−−ρ, ρ′ →∞

z_

z+

z_

,y’_ y’_

x+ , x_ , y_y+

x’− , x’_

Regge limit symmetry: 2-dim conformal group SL(2,C) formed fromP1,P2,M12,D,K1 and K2 which leave the plane (0, 0, z⊥) invariant.

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 5 / 50

Pomeron in a conformal theory

A(x, y; x′, y′) s→∞=

i2

∫dν f+(ω(λ, ν))F(λ, ν)Ω(r, ν)Rℵ(λ,ν)/2

L. Cornalba (2007)f+(ω) = eiπω−1

sinπω - signature factor

Ω(r, ν) =sin νρsinh ρ

, cosh ρ =

√r

2

- solution of the eqn (H3 + ν2 + 1)Ω(r, ν) = 0

The dynamics is described by:ω(λ, ν) - pomeron intercept,andF(λ, ν) - “pomeron residue”.

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 6 / 50

Pomeron in a conformal theory

A(x, y; x′, y′) s→∞=

i2

∫dν f+(ω(λ, ν))F(λ, ν)Ω(r, ν)Rω(λ,ν)/2

Pomeron intercept ω(ν, λ) is known in two limits:

1. λ→ 0 : ω(ν, λ) =λ

πχ(ν) + λ2ω1(ν) + ...

χ(ν) = 2ψ(1)− ψ(12 + iν)− ψ(1

2 − iν) - BFKL intercept,

ω1(ν) - NLO BFKL intercept Lipatov, Kotikov (2000)

2. λ→∞ : AdS/CFT ⇒ ω(ν, λ) = 2− ν2 + 42√λ

+ ...

2 = gravition spin , next term - Brower, Polchinski, Strassler, Tan (2006)Cornalba, Costa, Penedones (2007)

Now: two more terms (∼ λ−1 and ∼ λ−3/2)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 7 / 50

Pomeron in a conformal theory

A(x, y; x′, y′) s→∞=

i2

∫dν f+(ω(λ, ν))F(λ, ν)Ω(r, ν)Rω(λ,ν)/2

The function F(ν, λ) in two limits:

1. λ→ 0 : F(ν, λ) = λ2F0(ν) + λ3F1(ν) + ...

F0(ν) = π sinhπν4ν cosh3 πν

Cornalba, Costa, Penedones (2007)

F1(ν) = see below G. Chirilli and I.B. (2009)

2. λ→∞ : AdS/CFT ⇒ ω(ν, λ) = π3ν2 1 + ν2

sinh2 πν+ ...

L.Cornalba (2007)

We calculate F1(ν) (and confirm ω1(ν)) using the expansion of high-energyamplitudes in Wilson lines (color dipoles)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 8 / 50

Pomeron in a conformal theory

A(x, y; x′, y′) s→∞=

i2

∫dν f+(ω(λ, ν))F(λ, ν)Ω(r, ν)Rω(λ,ν)/2

The function F(ν, λ) in two limits:

1. λ→ 0 : F(ν, λ) = λ2F0(ν) + λ3F1(ν) + ...

F0(ν) = π sinhπν4ν cosh3 πν

Cornalba, Costa, Penedones (2007)

F1(ν) = see below G. Chirilli and I.B. (2009)

2. λ→∞ : AdS/CFT ⇒ ω(ν, λ) = π3ν2 1 + ν2

sinh2 πν+ ...

L.Cornalba (2007)

We calculate F1(ν) (and confirm ω1(ν)) using the expansion of high-energyamplitudes in Wilson lines (color dipoles)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 8 / 50

Light-cone expansion and DGLAP evolution in the NLO

k <2

µ2

µk > 2 2

+...+

µ2 - factorization scale (normalization point)

k2⊥ > µ2 - coefficient functions

k2⊥ < µ2 - matrix elements of light-ray operators (normalized at µ2)

OPE in light-ray operators (x− y)2 → 0

Tjµ(x)jν(y) =xξ

2π2x4

[1 +

αs

π(ln x2µ2 + C)

]ψ(x)γµγ

ξγν [x, y]ψ(y) + O(1x2 )

[x, y] ≡ Peig∫ 1

0 du (x−y)µAµ(ux+(1−u)y) - gauge link

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 9 / 50

Light-cone expansion and DGLAP evolution in the NLO

k <2

µ2

µk > 2 2

+...+

µ2 - factorization scale (normalization point)

k2⊥ > µ2 - coefficient functions

k2⊥ < µ2 - matrix elements of light-ray operators (normalized at µ2)

OPE in light-ray operators (x− y)2 → 0

Tjµ(x)jν(y) =xξ

2π2x4

[1 +

αs

π(ln x2µ2 + C)

]ψ(x)γµγ

ξγν [x, y]ψ(y) + O(1x2 )

[x, y] ≡ Peig∫ 1

0 du (x−y)µAµ(ux+(1−u)y) - gauge link

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 9 / 50

Light-cone expansion and DGLAP evolution in the NLO

k <2

µ2

µk > 2 2

+...+

µ2 - factorization scale (normalization point)

k2⊥ > µ2 - coefficient functions

k2⊥ < µ2 - matrix elements of light-ray operators (normalized at µ2)

Renorm-group equation for light-ray operators⇒ DGLAP evolution ofparton densities (x− y)2 = 0

µ2 ddµ2 ψ(x)[x, y]ψ(y) = KLOψ(x)[x, y]ψ(y) + αsKNLOψ(x)[x, y]ψ(y)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 10 / 50

Four steps of an OPE

To factorize an amplitude into a product of coefficient functionsand matrix elements of relevant operators.To find the evolution equations of the operators with respect tofactorization scale.To solve these evolution equations.To convolute the solution with the initial conditions for the evolutionand get the amplitude

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 11 / 50

DIS at high energy: relevant operators

At high energies, particles move along straight lines⇒the amplitude of γ∗A→ γ∗A scattering reduces to the matrix element ofa two-Wilson-line operator (color dipole):

A(s) =

∫d2k⊥4π2 IA(k⊥)〈B|TrU(k⊥)U†(−k⊥)|B〉

U(x⊥) = Pexp[ig∫ ∞−∞

du nµAµ(un + x⊥)]

Wilson line

Formally, means the operator expansion in Wilson lines

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 12 / 50

DIS at high energy: relevant operators

At high energies, particles move along straight lines⇒the amplitude of γ∗A→ γ∗A scattering reduces to the matrix element ofa two-Wilson-line operator (color dipole):

A(s) =

∫d2k⊥4π2 IA(k⊥)〈B|TrU(k⊥)U†(−k⊥)|B〉

U(x⊥) = Pexp[ig∫ ∞−∞

du nµAµ(un + x⊥)]

Wilson line

Formally, means the operator expansion in Wilson linesI. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 12 / 50

Rapidity factorization

>Y

<Y

+ +...

η - rapidity factorization scale

Rapidity Y > η - coefficient function (“impact factor”)Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapiditydivergence cut by η

Uηx = Pexp

[ig∫ ∞−∞

dx+Aη+(x+, x⊥)]

Aηµ(x) =

∫d4k

(2π)4 θ(eη − |αk|)e−ik·xAµ(k)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 13 / 50

Spectator frame: propagation in the shock-wave background.

Boosted Field

Each path is weighted with the gauge factor Peig∫

dxµAµ

. Quarks and gluonsdo not have time to deviate in the transverse space⇒ we can replace thegauge factor along the actual path with the one along the straight-line path.

x

z z’

y

Wilson Line

[ x→ z: free propagation]×[Uab(z⊥) - instantaneous interaction with the η < η2 shock wave]×[ z→ y: free propagation ]

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 14 / 50

High-energy expansion in color dipoles

>Y

<Y

+ +...

The high-energy operator expansion is

T jµ(x)jν(y) =

∫d2z1d2z2 ILO

µν (z1, z2, x, y)TrUηz1

U†ηz2

+ NLO contribution

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 15 / 50

High-energy expansion in color dipoles

>Y

<Y

+ +...

η - rapidity factorization scale

Evolution equation for color dipoles

ddη

trUηx U†ηy =

αs

2π2

∫d2z

(x− y)2

(x− z)2(y− z)2 [trUηx U†ηy trUη

x U†ηy

− NctrUηx U†ηy ] + αsKNLOtrUη

x U†ηy + O(α2s )

(Linear part of KNLO = KNLO BFKL)I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 15 / 50

Evolution equation for color dipoles

To get the evolution equation, consider the dipole with the rapidies upto η1 and integrate over the gluons with rapidities η1 > η > η2. Thisintegral gives the kernel of the evolution equation (multiplied by thedipole(s) with rapidities up to η2).

αs(η1 − η2)Kevol ⊗

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 16 / 50

Evolution equation in the leading order

ddη

TrUxU†y = KLOTrUxU†y+ ... ⇒

ddη〈TrUxU†y〉shockwave = 〈KLOTrUxU†y〉shockwave

x

a

b

b

a a

a

b

b

y(a) (b) (c) (d)

x xx* xx

*x

*x x

*

Uabz = TrtaUztbU†z ⇒ (UxU†y)η1 → (UxU†y)η1 +αs(η1−η2)(UxU†z UzU†y)η2

⇒ Evolution equation is non-linear

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 17 / 50

Non linear evolution equation

U(x, y) ≡ 1− 1Nc

TrU(x⊥)U†(y⊥)

BK equation

ddηU(x, y) =

αsNc

2π2

∫d2z (x− y)2

(x− z)2(y− z)2

U(x, z) + U(z, y)− U(x, y)− U(x, z)U(z, y)

I. B. (1996), Yu. Kovchegov (1999)Alternative approach: JIMWLK (1997-2000)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 18 / 50

Non-linear evolution equation

U(x, y) ≡ 1− 1Nc

TrU(x⊥)U†(y⊥)

BK equation

ddηU(x, y) =

αsNc

2π2

∫d2z (x− y)2

(x− z)2(y− z)2

U(x, z) + U(z, y)− U(x, y)− U(x, z)U(z, y)

I. B. (1996), Yu. Kovchegov (1999)Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD⇒ BFKL (LLA: αs 1, αsη ∼ 1)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 19 / 50

Non-linear evolution equation

U(x, y) ≡ 1− 1Nc

TrU(x⊥)U†(y⊥)

BK equation

ddηU(x, y) =

αsNc

2π2

∫d2z (x− y)2

(x− z)2(y− z)2

U(x, z) + U(z, y)− U(x, y)− U(x, z)U(z, y)

I. B. (1996), Yu. Kovchegov (1999)Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD⇒ BFKL (LLA: αs 1, αsη ∼ 1)

LLA for DIS in sQCD⇒ BK eqn (LLA: αs 1, αsη ∼ 1, αsA1/3 ∼ 1)

(s for semiclassical)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 20 / 50

Conformal invariance of the BK equation

Formally, a light-like Wilson line

[∞p1 + x⊥,−∞p1 + x⊥] = Pexp

ig∫ ∞−∞

dx+ A+(x+, x⊥)

is invariant under inversion (with respect to the point with x− = 0).

Indeed,(x+, x⊥)2 = −x2

⊥ ⇒ after the inversion x⊥ → x⊥/x2⊥ and x+ → x+/x2

⊥ ⇒

[∞p1+x⊥,−∞p1+x⊥] → Pexp

ig∫ ∞−∞

dx+

x2⊥

A+(x+

x2⊥,

x⊥x2⊥

)

= [∞p1+x⊥x2⊥,−∞p1+

x⊥x2⊥

]

⇒The dipole kernel is invariant under the inversion V(x⊥) = U(x⊥/x2⊥)

ddη

TrVxV†y =αs

2π2

∫d2z6z4

(x− y)2 6z4

(x− z)2(z− y)2 [TrVxV†z TrVzV†y − NcTrVxV†y]

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 21 / 50

Conformal invariance of the BK equation

Formally, a light-like Wilson line

[∞p1 + x⊥,−∞p1 + x⊥] = Pexp

ig∫ ∞−∞

dx+ A+(x+, x⊥)

is invariant under inversion (with respect to the point with x− = 0).

Indeed,(x+, x⊥)2 = −x2

⊥ ⇒ after the inversion x⊥ → x⊥/x2⊥ and x+ → x+/x2

[∞p1+x⊥,−∞p1+x⊥] → Pexp

ig∫ ∞−∞

dx+

x2⊥

A+(x+

x2⊥,

x⊥x2⊥

)

= [∞p1+x⊥x2⊥,−∞p1+

x⊥x2⊥

]

⇒The dipole kernel is invariant under the inversion V(x⊥) = U(x⊥/x2⊥)

ddη

TrVxV†y =αs

2π2

∫d2z6z4

(x− y)2 6z4

(x− z)2(z− y)2 [TrVxV†z TrVzV†y − NcTrVxV†y]

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 21 / 50

Conformal invariance of the BK equation

Formally, a light-like Wilson line

[∞p1 + x⊥,−∞p1 + x⊥] = Pexp

ig∫ ∞−∞

dx+ A+(x+, x⊥)

is invariant under inversion (with respect to the point with x− = 0).

Indeed,(x+, x⊥)2 = −x2

⊥ ⇒ after the inversion x⊥ → x⊥/x2⊥ and x+ → x+/x2

⊥ ⇒

[∞p1+x⊥,−∞p1+x⊥] → Pexp

ig∫ ∞−∞

dx+

x2⊥

A+(x+

x2⊥,

x⊥x2⊥

)

= [∞p1+x⊥x2⊥,−∞p1+

x⊥x2⊥

]

⇒The dipole kernel is invariant under the inversion V(x⊥) = U(x⊥/x2⊥)

ddη

TrVxV†y =αs

2π2

∫d2z6z4

(x− y)2 6z4

(x− z)2(z− y)2 [TrVxV†z TrVzV†y − NcTrVxV†y]

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 21 / 50

Conformal invariance of the BK equation

Formally, a light-like Wilson line

[∞p1 + x⊥,−∞p1 + x⊥] = Pexp

ig∫ ∞−∞

dx+ A+(x+, x⊥)

is invariant under inversion (with respect to the point with x− = 0).

Indeed,(x+, x⊥)2 = −x2

⊥ ⇒ after the inversion x⊥ → x⊥/x2⊥ and x+ → x+/x2

⊥ ⇒

[∞p1+x⊥,−∞p1+x⊥] → Pexp

ig∫ ∞−∞

dx+

x2⊥

A+(x+

x2⊥,

x⊥x2⊥

)

= [∞p1+x⊥x2⊥,−∞p1+

x⊥x2⊥

]

⇒The dipole kernel is invariant under the inversion V(x⊥) = U(x⊥/x2⊥)

ddη

TrVxV†y =αs

2π2

∫d2z6z4

(x− y)2 6z4

(x− z)2(z− y)2 [TrVxV†z TrVzV†y − NcTrVxV†y]

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 21 / 50

Conformal invariance of the BK equation

SL(2,C) for Wilson lines

S− ≡i2

(K1 + iK2), S0 ≡i2

(D + iM12), S+ ≡i2

(P1 − iP2)

[S0, S±] = ±S±,12

[S+, S−] = S0,

[S−, U(z, z)] = z2∂zU(z, z), [S0, U(z, z)] = z∂zU(z, z), [S+, U(z, z)] = −∂zU(z, z)

z ≡ z1 + iz2, z ≡ z1 + iz2, U(z⊥) = U(z, z)

Conformal invariance of the evolution kernel

ddη

[S−,TrUxU†y] =αsNc

2π2

∫dz K(x, y, z)[S−,TrUxU†zTrUzU†y]

⇒[x2 ∂

∂x+ y2 ∂

∂y+ z2 ∂

∂z

]K(x, y, z) = 0

In the leading order - OK. In the NLO - ?

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 22 / 50

Conformal invariance of the BK equation

SL(2,C) for Wilson lines

S− ≡i2

(K1 + iK2), S0 ≡i2

(D + iM12), S+ ≡i2

(P1 − iP2)

[S0, S±] = ±S±,12

[S+, S−] = S0,

[S−, U(z, z)] = z2∂zU(z, z), [S0, U(z, z)] = z∂zU(z, z), [S+, U(z, z)] = −∂zU(z, z)

z ≡ z1 + iz2, z ≡ z1 + iz2, U(z⊥) = U(z, z)

Conformal invariance of the evolution kernel

ddη

[S−,TrUxU†y] =αsNc

2π2

∫dz K(x, y, z)[S−,TrUxU†zTrUzU†y]

⇒[x2 ∂

∂x+ y2 ∂

∂y+ z2 ∂

∂z

]K(x, y, z) = 0

In the leading order - OK. In the NLO - ?

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 22 / 50

Conformal invariance of the BK equation

SL(2,C) for Wilson lines

S− ≡i2

(K1 + iK2), S0 ≡i2

(D + iM12), S+ ≡i2

(P1 − iP2)

[S0, S±] = ±S±,12

[S+, S−] = S0,

[S−, U(z, z)] = z2∂zU(z, z), [S0, U(z, z)] = z∂zU(z, z), [S+, U(z, z)] = −∂zU(z, z)

z ≡ z1 + iz2, z ≡ z1 + iz2, U(z⊥) = U(z, z)

Conformal invariance of the evolution kernel

ddη

[S−,TrUxU†y] =αsNc

2π2

∫dz K(x, y, z)[S−,TrUxU†zTrUzU†y]

⇒[x2 ∂

∂x+ y2 ∂

∂y+ z2 ∂

∂z

]K(x, y, z) = 0

In the leading order - OK. In the NLO - ?I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 22 / 50

Expansion of the amplitude in color dipoles in the NLO

>Y

<Y

+ +...

The high-energy operator expansion is

TO(x)O(y) =

∫d2z1d2z2 ILO(z1, z2)TrUη

z1U†ηz2

+

∫d2z1d2z2d2z3 INLO(z1, z2, z3)[

1Nc

TrTnUηz1

U†ηz3TnUη

z3U†ηz2 − TrUη

z1U†ηz2]

In the leading order - conf. invariant impact factor

ILO =x−2+ y−2

+

π2Z21Z2

2, Zi ≡

(x− zi)2⊥

x+− (y− zi)

2⊥

y+CCP, 2007

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 23 / 50

NLO impact factor

z2

zz’z1

y xz3

z2

zz’z1

y xz3

(a) (b)

INLO(x, y; z1, z2, z3; η) = − ILO × λ

π2z2

13

z212z2

23

[lnσs4Z3 −

iπ2

+ C]

The NLO impact factor is not Möbius invariant⇒ the color dipole with thecutoff η is not invariantHowever, if we define a composite operator (a - analog of µ−2 for usual OPE)

[TrUηz1

U†ηz2]conf

= TrUηz1

U†ηz2

2π2

∫d2z3

z212

z213z2

23[TrTnUη

z1U†ηz3

TnUηz3

U†ηz2 − NcTrUη

z1U†ηz2] ln

az212

z213z2

23+ O(λ2)

the impact factor becomes conformal in the NLO.I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 24 / 50

Operator expansion in conformal dipoles

TO(x)O(y) =

∫d2z1d2z2 ILO(z1, z2)TrUη

z1U†ηz2conf

+

∫d2z1d2z2d2z3 INLO(z1, z2, z3)[

1Nc

TrTnUηz1

U†ηz3TnUη

z3U†ηz2 − TrUη

z1U†ηz2]

INLO = − ILO λ

2π2

∫dz3

z212

z213z2

23

[ln

z212e2ηas2

z213z2

23Z2

3 − iπ + 2C]

The new NLO impact factor is conformally invariant⇒ TrUη

z1U†ηz2 conf is Möbius invariant

We think that one can construct the composite conformal dipole operator orderby order in perturbation theory.

Analogy: when the UV cutoff does not respect the symmetry of a local operator,the composite local renormalized operator in must be corrected by finitecounterterms order by order in perturbaton theory.

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 25 / 50

Definition of the NLO kernel

In general

ddη

TrUxU†y = αsKLOTrUxU†y+ α2s KNLOTrUxU†y+ O(α3

s )

α2s KNLOTrUxU†y =

ddη

TrUxU†y − αsKLOTrUxU†y+ O(α3s )

We calculate the “matrix element” of the r.h.s. in the shock-wave background

〈α2s KNLOTrUxU†y〉 =

ddη〈TrUxU†y〉 − 〈αsKLOTrUxU†y〉+ O(α3

s )

Subtraction of the (LO) contribution (with the rigid rapidity cutoff)⇒

[1v

]+

prescription in the integrals over Feynman parameter v

Typical integral∫ 1

0dv

1(k − p)2

⊥v + p2⊥(1− v)

[1v

]+

=1

p2⊥

ln(k − p)2

⊥p2⊥

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 26 / 50

Definition of the NLO kernel

In general

ddη

TrUxU†y = αsKLOTrUxU†y+ α2s KNLOTrUxU†y+ O(α3

s )

α2s KNLOTrUxU†y =

ddη

TrUxU†y − αsKLOTrUxU†y+ O(α3s )

We calculate the “matrix element” of the r.h.s. in the shock-wave background

〈α2s KNLOTrUxU†y〉 =

ddη〈TrUxU†y〉 − 〈αsKLOTrUxU†y〉+ O(α3

s )

Subtraction of the (LO) contribution (with the rigid rapidity cutoff)⇒

[1v

]+

prescription in the integrals over Feynman parameter v

Typical integral∫ 1

0dv

1(k − p)2

⊥v + p2⊥(1− v)

[1v

]+

=1

p2⊥

ln(k − p)2

⊥p2⊥

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 26 / 50

Definition of the NLO kernel

In general

ddη

TrUxU†y = αsKLOTrUxU†y+ α2s KNLOTrUxU†y+ O(α3

s )

α2s KNLOTrUxU†y =

ddη

TrUxU†y − αsKLOTrUxU†y+ O(α3s )

We calculate the “matrix element” of the r.h.s. in the shock-wave background

〈α2s KNLOTrUxU†y〉 =

ddη〈TrUxU†y〉 − 〈αsKLOTrUxU†y〉+ O(α3

s )

Subtraction of the (LO) contribution (with the rigid rapidity cutoff)⇒

[1v

]+

prescription in the integrals over Feynman parameter v

Typical integral∫ 1

0dv

1(k − p)2

⊥v + p2⊥(1− v)

[1v

]+

=1

p2⊥

ln(k − p)2

⊥p2⊥

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 26 / 50

Definition of the NLO kernel

In general

ddη

TrUxU†y = αsKLOTrUxU†y+ α2s KNLOTrUxU†y+ O(α3

s )

α2s KNLOTrUxU†y =

ddη

TrUxU†y − αsKLOTrUxU†y+ O(α3s )

We calculate the “matrix element” of the r.h.s. in the shock-wave background

〈α2s KNLOTrUxU†y〉 =

ddη〈TrUxU†y〉 − 〈αsKLOTrUxU†y〉+ O(α3

s )

Subtraction of the (LO) contribution (with the rigid rapidity cutoff)⇒

[1v

]+

prescription in the integrals over Feynman parameter v

Typical integral∫ 1

0dv

1(k − p)2

⊥v + p2⊥(1− v)

[1v

]+

=1

p2⊥

ln(k − p)2

⊥p2⊥

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 26 / 50

Gluon part of the NLO BK kernel: diagrams

(II) (III) (IV) (V)

(VI) (VII) (VIII) (IX) (X)

(I)

(XIV)(XI) (XIII)(XII) (XV)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 27 / 50

Diagrams for 1→3 dipoles transition

(XXVI) (XXVII)

(XVI) (XVII) (XVIII) (XIX) (XX)

(XXI) (XXIV) (XV)(XXII) (XXIII)

(XVIII) (XXIX) (XXX)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 28 / 50

Diagrams for 1→3 dipoles transition

(XXXI) (XXXIII) (XXXIV)(XXXII)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 29 / 50

"Running coupling" diagrams

(I) (II) (III) (IV) (V)

y

x

(VI) (VII) (VIII) (IX) (X)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 30 / 50

1→ 2 dipole transition diagrams

q

k’

k

k’

k

q q

k’ kk’

q

k k

k’

q

k’

kk’

qq

k

k’

k’

q

kq

k’

k

(c)(b)(a) (d) (e)

(f) (g) (h) (i) (j)

x x*

x*

x

x*

x x*

x*

x*

x*

x x x x*

x*

x*

x x x x

k

q

a

b

c

a

b

cd

a

b

cd

a

bc

d

a

a aaaa

b b

b b

cc

c c

cd

d

ddd

cb

b

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 31 / 50

Gluino and scalar loops

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 32 / 50

Evolution equation for color dipole in N = 4 (I.B. and G. Chirilli)

ddη

TrUηz1

U†ηz2

=αs

π2

∫d2z3

z212

z213z2

23

1− αsNc

[π2

3+2 ln

z213

z212

lnz2

23

z212

]× [TrTaUη

z1U†ηz3

TaUηz3

U†ηz2 − NcTrUη

z1U†ηz2]

− α2s

4π4

∫d2z3d2z4

z434

z212z2

34

z213z2

24

[1 +

z212z2

34

z213z2

24 − z223z2

14

]ln

z213z2

24

z214z2

23

× Tr[Ta,Tb]Uηz1

Ta′Tb′U†ηz2+ TbTaUη

z1[Tb′ ,Ta′ ]U†ηz2

(Uηz3

)aa′(Uηz4− Uη

z3)bb′

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff α < σ = e2η in the rapidityof Wilson lines.

For the conformal composite dipole the result is Möbius invariant

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 33 / 50

Evolution equation for color dipole in N = 4 (I.B. and G. Chirilli)

ddη

TrUηz1

U†ηz2

=αs

π2

∫d2z3

z212

z213z2

23

1− αsNc

[π2

3+2 ln

z213

z212

lnz2

23

z212

]× [TrTaUη

z1U†ηz3

TaUηz3

U†ηz2 − NcTrUη

z1U†ηz2]

− α2s

4π4

∫d2z3d2z4

z434

z212z2

34

z213z2

24

[1 +

z212z2

34

z213z2

24 − z223z2

14

]ln

z213z2

24

z214z2

23

× Tr[Ta,Tb]Uηz1

Ta′Tb′U†ηz2+ TbTaUη

z1[Tb′ ,Ta′ ]U†ηz2

(Uηz3

)aa′(Uηz4− Uη

z3)bb′

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff α < σ = e2η in the rapidityof Wilson lines.

For the conformal composite dipole the result is Möbius invariant

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 33 / 50

Evolution equation for composite conformal dipoles in N = 4

ddη

[TrUη

z1U†ηz2]conf

=αs

π2

∫d2z3

z212

z213z2

23

[1− αsNc

4ππ2

3

][TrTaUη

z1U†ηz3

TaUz3U†ηz2 − NcTrUη

z1U†ηz2]conf

− α2s

4π4

∫d2z3d2z4

z212

z213z2

24z234

2 ln

z212z2

34

z214z2

23+[1 +

z212z2

34

z213z2

24 − z214z2

23

]ln

z213z2

24

z214z2

23

× Tr[Ta,Tb]Uη

z1Ta′Tb′U†ηz2

+ TbTaUηz1

[Tb′ ,Ta′ ]U†ηz2[(Uη

z3)aa′(Uη

z4)bb′ − (z4 → z3)]

Now Möbius invariant!

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 34 / 50

NLO Amplitude in N=4 SYM theory: factorization in rapidity

YA

YB

<Y<YB YA

x y

y’x’

+ +...

x’

x y x y

y’y’x’

(x− y)4(x′ − y′)4〈TO(x)O†(y)O(x′)O†(y′)〉

=

∫d2z1⊥d2z2⊥d2z′1⊥d2z′2⊥IFa0(x, y; z1, z2)[DD]a0,b0(z1, z2; z′1, z

′2)IFb0(x′, y′; z′1, z

′2)

a0 = x+y+(x−y)2 , b0 =

x′−y′−(x′−y′)2 ⇔ impact factors do not scale with energy

⇒ all energy dependence is contained in [DD]a0,b0 (a0b0 = R)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 35 / 50

NLO Amplitude in N=4 SYM theory: factorization in rapidity

YA

YB

<Y<YB YA

x y

y’x’

+ +...

x’

x y x y

y’y’x’

(x− y)4(x′ − y′)4〈TO(x)O†(y)O(x′)O†(y′)〉

=

∫d2z1⊥d2z2⊥d2z′1⊥d2z′2⊥IFa0(x, y; z1, z2)[DD]a0,b0(z1, z2; z′1, z

′2)IFb0(x′, y′; z′1, z

′2)

Impact factor (R =(x−y)2z2

12x+y+Z1Z2

- conf. ratio)

IFa0 =

∫dν∫

dz0 R12 +iν

(1 +

αsNc

π

[2π2

3+

4χ(ν)− 81 + 4ν2 −

2π2

cosh2 πν

])Ua0(z0, ν)

Ua(z0, ν) =1π2

∫d2z1d2z2

z412

( z212

z210z2

20

) 12−iνU(z1, z2), U ≡ 1− 1

NcTrUz1 U†z2

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 35 / 50

NLO Amplitude in N=4 SYM theory: factorization in rapidity

YA

YB

<Y<YB YA

x y

y’x’

+ +...

x’

x y x y

y’y’x’

(x− y)4(x′ − y′)4〈TO(x)O†(y)O(x′)O†(y′)〉

=

∫d2z1⊥d2z2⊥d2z′1⊥d2z′2⊥IFa0(x, y; z1, z2)[DD]a0,b0(z1, z2; z′1, z

′2)IFb0(x′, y′; z′1, z

′2)

Dipole-dipole scattering χ(γ) ≡ 2C − ψ(γ)− ψ(1− γ), γ ≡ 12 + iν

[DD] =

∫dν∫

dz0( z2

12

z210z2

20

) 12 +iν( z2

12

z210z2

20

) 12−iν

D(12

+ iν;λ)Rω(ν)/2

D(γ;λ) =Γ(−γ)Γ(γ − 1)

Γ(1 + γ)Γ(2− γ)

1 +

αsNc

[ 4χ(ν)

1 + 4ν2 −π2

3+ iπ

N2c − 42N2

c

]+ O(g4)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 35 / 50

NLO Amplitude in N=4 SYM theory: factorization in rapidity

YA

YB

<Y<YB YA

x y

y’x’

+ +...

x’

x y x y

y’y’x’

(x− y)4(x′ − y′)4〈TO(x)O†(y)O(x′)O†(y′)〉

=

∫d2z1⊥d2z2⊥d2z′1⊥d2z′2⊥IFa0(x, y; z1, z2)[DD]a0,b0(z1, z2; z′1, z

′2)IFb0(x′, y′; z′1, z

′2)

Result : (G.A. Chirilli and I.B.)

F(ν) =N2

c

N2c − 1

4π4α2s

cosh2 πν

1 +

αsNc

π

[π2

2− 2π2

cosh2 πν− 8

1 + 4ν2 + iπN2

c − 4N2

c

]I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 35 / 50

Conclusions

High-energy operator expansion in color dipoles works at the NLOlevel.

The NLO BK kernel in for the evolution of conformal compositedipoles in N = 4 SYM is Möbius invariant in the transverse plane.The NLO BK kernel agrees with NLO BFKL equation.The correlation function of four Z2 operators is calculated at theNLO BFKL order.

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 36 / 50

Conclusions

High-energy operator expansion in color dipoles works at the NLOlevel.The NLO BK kernel in for the evolution of conformal compositedipoles in N = 4 SYM is Möbius invariant in the transverse plane.The NLO BK kernel agrees with NLO BFKL equation.The correlation function of four Z2 operators is calculated at theNLO BFKL order.

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 36 / 50

NLO BFKL and anomalous dimensions of light-ray operators

Gluon operators of leading twist

Ogn ≡ Fa

−i∇n−2− Fai

Anomalous dimension (in gluodynamics)

γn =2παsNc

[− 1

n(n− 1)− 1

(n + 1)(n + 2)+ ψ(n + 1) + γE −

1112]

+ O(α2s )

BFKL gives γ(n, αs) at the non-physical point n→ 1

γn =[ALO BFKL

n + ωBNLO BFKLn + ...

](αsNc

πω

)nω ≡ n− 1

LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998)

ω = n− 1→ 0 corresponds to Fa−i∇

ω−1− Fai

− - some non-local operator.

Q: which one? A: gluon light-ray (LR) operator

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 37 / 50

NLO BFKL and anomalous dimensions of light-ray operators

Gluon operators of leading twist

Ogn ≡ Fa

−i∇n−2− Fai

Anomalous dimension (in gluodynamics)

γn =2παsNc

[− 1

n(n− 1)− 1

(n + 1)(n + 2)+ ψ(n + 1) + γE −

1112]

+ O(α2s )

BFKL gives γ(n, αs) at the non-physical point n→ 1

γn =[ALO BFKL

n + ωBNLO BFKLn + ...

](αsNc

πω

)nω ≡ n− 1

LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998)

ω = n− 1→ 0 corresponds to Fa−i∇

ω−1− Fai

− - some non-local operator.

Q: which one? A: gluon light-ray (LR) operator

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 37 / 50

NLO BFKL and anomalous dimensions of light-ray operators

Gluon operators of leading twist

Ogn ≡ Fa

−i∇n−2− Fai

Anomalous dimension (in gluodynamics)

γn =2παsNc

[− 1

n(n− 1)− 1

(n + 1)(n + 2)+ ψ(n + 1) + γE −

1112]

+ O(α2s )

BFKL gives γ(n, αs) at the non-physical point n→ 1

γn =[ALO BFKL

n + ωBNLO BFKLn + ...

](αsNc

πω

)nω ≡ n− 1

LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998)

ω = n− 1→ 0 corresponds to Fa−i∇

ω−1− Fai

− - some non-local operator.

Q: which one? A: gluon light-ray (LR) operator

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 37 / 50

NLO BFKL and anomalous dimensions of light-ray operators

Gluon operators of leading twist

Ogn ≡ Fa

−i∇n−2− Fai

Anomalous dimension (in gluodynamics)

γn =2παsNc

[− 1

n(n− 1)− 1

(n + 1)(n + 2)+ ψ(n + 1) + γE −

1112]

+ O(α2s )

BFKL gives γ(n, αs) at the non-physical point n→ 1

γn =[ALO BFKL

n + ωBNLO BFKLn + ...

](αsNc

πω

)nω ≡ n− 1

LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998)

ω = n− 1→ 0 corresponds to Fa−i∇

ω−1− Fai

− - some non-local operator.

Q: which one? A: gluon light-ray (LR) operator

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 37 / 50

Light-ray operators and parton densities

Gluon light-ray (LR) operator of twist 2

Fa−i(x′+ + x⊥)[x′+, x+]abFb i

− (x+ + x⊥)

Forward matrix element - gluon parton density

zµzν〈p|Faµξ(z)[z, 0]abFbξ

ν (0)|p〉µ z2=0= 2(pz)2

∫ 1

0dxB xBDg(xB, µ) cos(pz)xB

Evolution equation (in gluodynamics)

µ2 ddµ2 Fa

−i(x′+ + x⊥)[x′+, x+]abFb i− (x+ + x⊥)

=

∫ x′+

x+dz′+

∫ z′+

x+dz+ K(x′+, x+; z′+, z+;αs)Fa

−i(z′+ + x⊥)[z′+, z+]abFb i− (z+ + x⊥)

“Forward” LR operator

F(L+, x⊥) =

∫dx+ Fa

−i(L+ + x+ + x⊥)[L+ + x+, x+]abFbi−(x+ + x⊥)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 38 / 50

Light-ray operators and parton densities

Expansion in (“forward”) local operators

F(L+, x⊥) =

∞∑n=2

Ln−2+

(n− 2)!Og

n(x⊥), Ogn ≡

∫dx+Fa

−i∇n−2− Fai

−(x+, x⊥)

Evolution equation for F(L+, x⊥)

µd

dµF(L+, x⊥) =

∫ 1

0du Kgg(u, αs)F(uL+, x⊥)

⇒ γn(αs) = −∫ 1

0du un−2Kgg(u, αs) µ

ddµOg

n = −γn(αs)Ogn

u−1Kgg - DGLAP kernel

u−1Kgg(u) =2αsNc

π

(uu +

[ 1uu

]+− 2 +

1112δ(u)

)+ higher orders in αs

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 39 / 50

Light-ray operators

Conformal LR operator (j = 12 + iν)

Fµ(L+, x⊥) =

∫ ∞−∞

dν2π

(L+)−32 +iνFµ1

2 +iν(x⊥)

Fµj (x⊥) =

∫ ∞0

dL+ L1−j+ Fµ(L+, x⊥)

Evolution equation for “forward” conformal light-ray operators

⇒ µ2 ddµ2Fj(z⊥) =

∫ 1

0du Kgg(u, αs)uj−2Fj(z⊥)

⇒ γj(αs) is an analytical continuation of γn(αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 40 / 50

Supermultiplet of LR operators

Gluino and scalar LR operators

Λ(L+, x⊥) =i2

∫dx′+ [λa(L+ + x+ + x⊥)[x′+ + x+, x+]abσ−∇−λb(x+ + x⊥) + c.c]

Φ(L+, x⊥) =

∫dx′+ φa,I(L+ + x+ + x⊥)[x′+ + x+, x+]ab∇2

−φb,I(x+ + x⊥)

Λj(x⊥) =

∫ ∞0

dL+ L−j+1+ Λ(L+, x⊥), Φj(x⊥) =

∫ ∞0

dL+ L−j+1+ Φ(L+, x⊥)

SU4 singlet LR operators.

S1j(x⊥) = Fj(x⊥) +j− 1

8Λj(x⊥)− j(j− 1)

8Φj(x⊥)

S2j(x⊥) = Fj(x⊥)− 18

Λj(x⊥) +j(j + 1)

24Φj(x⊥)

S3j(x⊥) = Fj(x⊥)− j + 24

Λj(x⊥)− (j + 1)(j + 2)

8Φj(x⊥)

All operators have the same anomalous dimension

γS1j (αs) ≡ γj(αs) =

2αs

πNc[ψ(j− 1) + C] + O(α2

s ), γS2j = γS1

j+1, γS3j = γS1

j+2

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 41 / 50

Three-point CF of LR operator and two locals

Three-point correlation function of local operators (O = φaIφ

aI - Konishi

operator)

(µ2z223)−γK 〈S1n(z1)O(z2)O(z3)〉 =

∑ cn[1 + (−1)n]

z212z2

13z223

(z12−

z212−

z13−

z213

)n(µ−2z223

z212z2

13

) 12γ(n,αs)

x223⊥(µ2x2

23⊥)γK

∫dx1+〈S1n(x1+ , x1⊥)O(x2− , x2⊥)O(x3− , x3⊥)〉

= −2πicn[1 + (−1)n]

x423⊥

Γ(1 + 2n + γn)

Γ2(1 + n + 12γn)

( x223⊥

x2−x3−

)1+ γn2

(x212⊥

x2−+

x213⊥

x3−

)−1−n−γn

CF of light-ray operator and two local operators

x223⊥(µ2x2

23⊥)γK 〈S1j(x1⊥)O(x2− , x2⊥)O(x3− , x3⊥)〉

= −2πicj[1 + eiπj]

x423⊥

Γ(1 + 2j + γj)

Γ2(1 + j + 12γj)

( x223⊥

x2−x3−

)1+γj2

(x212⊥

x2−+

x213⊥

x3−

)−1−j−γj

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 42 / 50

Light-cone OPE

CF of light-ray operator and two local operators “in forward kinematics”

x223⊥(µ2x2

23⊥)γK

∫dx3−〈S

µj (x1⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=

∫ 1

0du

c(j, αs)[1 + eiπj]Lj−(uu)j[

x212⊥u + x2

13⊥ u]1+j

( uuµ−2x223⊥

[x212⊥u + x2

13⊥ u]2

) 12γ(j,αs)

Limit x23⊥ ≡ ∆→ 0

∆2(µ2∆2)γK

∫dx3−〈S+j (x1⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=Γ2(1 + j + γ

2

)Γ(2 + 2j + γ)

c(j, αs)[1 + eiπj]Lj−

(x212⊥)1+j(µ2x2

12⊥)−γ(j,αs)(µ∆)γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 43 / 50

Light-cone OPE

CF of light-ray operator and two local operators “in forward kinematics”

x223⊥(µ2x2

23⊥)γK

∫dx3−〈S

µj (x1⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=

∫ 1

0du

c(j, αs)[1 + eiπj]Lj−(uu)j[

x212⊥u + x2

13⊥ u]1+j

( uuµ−2x223⊥

[x212⊥u + x2

13⊥ u]2

) 12γ(j,αs)

Limit x23⊥ ≡ ∆→ 0

∆2(µ2∆2)γK

∫dx3−〈S+j (x1⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=Γ2(1 + j + γ

2

)Γ(2 + 2j + γ)

c(j, αs)[1 + eiπj]Lj−

(x212⊥)1+j(µ2x2

12⊥)−γ(j,αs)(µ∆)γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 43 / 50

Light-cone OPE

Light-ray operators in (+) and (-) directions:

Φ+(L+, x⊥) =

∫dx′+ ∇−φa,I(L+ + x+ + x⊥)[x′+ + x+, x+]ab∇−φb,I(x+ + x⊥)

Φ+j (x⊥) =

∫ ∞0

dL+ L−j+1+ Φ(L+, x⊥)

Φ−(L−, x⊥) =

∫dx′− ∇+φ

a,I(L− + x− + x⊥)[x′− + x−, x−]ab∇+φb,I(x− + x⊥)

Φ−j (x⊥) =

∫ ∞0

dL− L−j+1+ Φ(L−, x⊥)

and similarly for Λj’s and Gj’s

CF of two LRs : 〈S+j= 3

2 +iν(x1⊥)S−

j′= 32 +iν′

(x3⊥)〉 =δ(ν − ν′)a(j, αs)

(x213⊥)j+1(x2

13⊥µ2)γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 44 / 50

“DGLAP” represenation of 4-point CFs

⇒ Light-cone OPE

x212⊥(µ2x2

12⊥)γK

∫dx1+ O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)

=

∫ 12 +i∞

12−i∞

dj c(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)γ(j,αs)S+j (x1⊥)

⇒ “DGLAP” result (at x212 → 0)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)12γ(j,αs)〈Sµj (x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 45 / 50

“DGLAP” represenation of 4-point CFs

⇒ Light-cone OPE

x212⊥(µ2x2

12⊥)γK

∫dx1+ O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)

=

∫ 12 +i∞

12−i∞

dj c(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)γ(j,αs)S+j (x1⊥)

⇒ “DGLAP” result (at x212 → 0)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)12γ(j,αs)〈Sµj (x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 45 / 50

“DGLAP” represenation of 4-point CFs

⇒ Light-cone OPE

x212⊥(µ2x2

12⊥)γK

∫dx1+ O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)

=

∫ 12 +i∞

12−i∞

dj c(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)γ(j,αs)S+j (x1⊥)

⇒ “DGLAP” result (at x212 → 0)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)12γ(j,αs)〈Sµj (x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 45 / 50

“DGLAP” represenation of 4-point CFs

⇒ Light-cone OPE

x212⊥(µ2x2

12⊥)γK

∫dx1+ O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)

=

∫ 12 +i∞

12−i∞

dj c(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)γ(j,αs)S+j (x1⊥)

⇒ “DGLAP” result (at x212 → 0)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)[1 + eiπj]Lj+(µ2x2

12⊥)12γ(j,αs)〈Sµj (x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 45 / 50

Light-cone limit of Cornalba’s formula

Cornalba’s formula as x212⊥ → 0

[x212x2

34]2+γK

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=iα2

s

8π2L+L−

∫ 1

0dudv

∫dν

tanhπνν cosh2 πν

( x212⊥x2

34⊥uuvv[x2

13⊥v + x214v]2

) 12 +iν(L2

+L2−uuvv

x212⊥x2

34⊥

)ℵ(ν)/2f+

=iα2

s

8π2∫ 1

0dv∫ 1

2 +i∞

12−i∞

dξ f(ℵ(ξ)

)ξ ≡ 1

2+ iν

× (vv)1−ξ+ℵ(ξ)2 cosπξ(ξ − 1

2 ) sin3 πξ

B(2− ξ + ℵ(ξ)

2

)[x2

13⊥v + x214v]2+ℵ(ξ)

( x212⊥x2

34⊥[x2

13⊥v + x214v]2

)−ξ−ℵ(ξ)2(L+L−)1+ℵ(ξ)

= “BFKL” representation of the amplitude in the (Regge) + (x212 → 0) limit

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 46 / 50

DGLAP vs BFKL for 4-point CFs

“DGLAP” result (leading twist)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

BFKL result (ℵ(ξ, αs) = αsNcπ χ(ξ) + ... - pomeron intercept)

[x212x2

34]2+γK

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=iα2

s

8π2∫ 1

0dv∫ 1

2 +i∞

12−i∞

dξ f(ℵ(ξ)

)ξ ≡ 1

2+ iν

× (vv)1−ξ+ℵ(ξ)2 cosπξ(ξ − 1

2 ) sin3 πξ

B(2− ξ + ℵ(ξ)

2

)[x2

13⊥v + x214v]2+ℵ(ξ)

( x212⊥x2

34⊥[x2

13⊥v + x214v]2

)−ξ−ℵ(ξ)2(L+L−)1+ℵ(ξ)

We compare these results around ξ ∼ j− 1 ∼ 0

⇒ 1 + ℵ(ξ, αs) = j and γ(j, αs) = −2ξ − ℵ(ξ)

ℵ(ξ)−2ℵ(ξ)ℵ′(ξ) ' αsNc

πξ+ζ(3)α2

s

ξ+... → γj = −2

αsNc

π(j− 1)+ [0 + ζ(3)(j− 1)]

( αsNc

π(j− 1)))3

+ ...

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 47 / 50

DGLAP vs BFKL for 4-point CFs

“DGLAP” result (leading twist)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

BFKL result (ℵ(ξ, αs) = αsNcπ χ(ξ) + ... - pomeron intercept)

[x212x2

34]2+γK

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=iα2

s

8π2∫ 1

0dv∫ 1

2 +i∞

12−i∞

dξ f(ℵ(ξ)

)ξ ≡ 1

2+ iν

× (vv)1−ξ+ℵ(ξ)2 cosπξ(ξ − 1

2 ) sin3 πξ

B(2− ξ + ℵ(ξ)

2

)[x2

13⊥v + x214v]2+ℵ(ξ)

( x212⊥x2

34⊥[x2

13⊥v + x214v]2

)−ξ−ℵ(ξ)2(L+L−)1+ℵ(ξ)

We compare these results around ξ ∼ j− 1 ∼ 0

⇒ 1 + ℵ(ξ, αs) = j and γ(j, αs) = −2ξ − ℵ(ξ)

ℵ(ξ)−2ℵ(ξ)ℵ′(ξ) ' αsNc

πξ+ζ(3)α2

s

ξ+... → γj = −2

αsNc

π(j− 1)+ [0 + ζ(3)(j− 1)]

( αsNc

π(j− 1)))3

+ ...

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 47 / 50

DGLAP vs BFKL for 4-point CFs

“DGLAP” result (leading twist)

µ−4(µ4x212x2

34)2+γk

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

=

∫ 12 +i∞

12−i∞

dj C(j, αs)

∫ 1

0dv

[1 + eiπj](L+L−)j[x2

12⊥v + x213⊥ v]1+j

( x212x2

34

[x213⊥v + x2

14⊥ v]2

) 12γ(j,αs)

(vv)j+ 12γ(j,αs)

BFKL result (ℵ(ξ, αs) = αsNcπ χ(ξ) + ... - pomeron intercept)

[x212x2

34]2+γK

∫dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=iα2

s

8π2∫ 1

0dv∫ 1

2 +i∞

12−i∞

dξ f(ℵ(ξ)

)ξ ≡ 1

2+ iν

× (vv)1−ξ+ℵ(ξ)2 cosπξ(ξ − 1

2 ) sin3 πξ

B(2− ξ + ℵ(ξ)

2

)[x2

13⊥v + x214v]2+ℵ(ξ)

( x212⊥x2

34⊥[x2

13⊥v + x214v]2

)−ξ−ℵ(ξ)2(L+L−)1+ℵ(ξ)

We compare these results around ξ ∼ j− 1 ∼ 0

⇒ 1 + ℵ(ξ, αs) = j and γ(j, αs) = −2ξ − ℵ(ξ)

ℵ(ξ)−2ℵ(ξ)ℵ′(ξ) ' αsNc

πξ+ζ(3)α2

s

ξ+... → γj = −2

αsNc

π(j− 1)+ [0 + ζ(3)(j− 1)]

( αsNc

π(j− 1)))3

+ ...

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 47 / 50

Result

γj = −2αsNc

π(j− 1)+ [0 + ζ(3)(j− 1)]

( αsNc

π(j− 1)))3

+ ...

is an anomalous dimension of light-ray operator F∇j−2F(x⊥)

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 48 / 50

Conclusion and Outlook

1 Conclusion:NLO BFKL gives anomalous dimensions of light-ray operatorsF+i∇ω−1F i

+ as ω → 0 (in all orders in αs)

2 OutlookIn QCD3-point CF of 〈F∇ω1−1F(x1⊥) F∇ω2−1F(x2⊥) F∇ω3−1F(x3⊥)〉as ω1, ω2, ω3 → 0 (joint project with V. Kazakov and E. Sobko):

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 49 / 50

Conclusion and Outlook

1 Conclusion:NLO BFKL gives anomalous dimensions of light-ray operatorsF+i∇ω−1F i

+ as ω → 0 (in all orders in αs)2 Outlook

In QCD3-point CF of 〈F∇ω1−1F(x1⊥) F∇ω2−1F(x2⊥) F∇ω3−1F(x3⊥)〉as ω1, ω2, ω3 → 0 (joint project with V. Kazakov and E. Sobko):

I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 2014 49 / 50

top related