glauber dynamics in continuum - uni-bielefeld.de

Post on 24-Jul-2022

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Glauber Dynamics in Continuum

Yuri Kondratievjoint work with O.Kutovyi and R.Minlos

Bielefeld, Germany

October 28, 2008

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 1 / 24

Kutovyi
Text Box

Setup General facts and notations

The configuration space:

Γ :={γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞ for all compact Λ ⊂ Rd}.

| · | - cardinality of the set.

Remark: Γ is a Polish space.

n-point configuration space:

Γ(n) :={η ⊂ Rd | |η| = n

}, n ∈ N0.

The space of finite configurations:

Γ0 :=⊔n∈N0

Γ(n).

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 2 / 24

Glauber dynamics with competition

Potential

φ : Rd 7→ R ∪ {+∞}:

(S) (Stability) There exists B > 0 such that, for any η ∈ Γ0, |η| ≥ 2.

E(η) :=∑

{x, y}⊂η

φ(x− y) ≥ −B|η|.

(SI) (Strong Integrability) For any β > 0,

Cst(β) :=∫

Rd

|1− exp [βφ(x)]|dx <∞.

Relative energy: γ ∈ Γ, x ∈ Rd \ γ

E(x, γ) :={ ∑

y∈γ φ(x− y), if∑y∈γ |φ(x− y)| <∞,

+∞, otherwise.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 3 / 24

Glauber dynamics with competition

Gibbs measures

∫Γ

∑x∈γ

F (γ, x)µ(dγ) =∫

Γ

∫Rd

e−βE(x, γ)F (γ ∪ x, x)zdxµ(dγ)

for any measurable function F : Γ× Rd → [0,+∞].

G(φ, z, β) - the set of all Gibbs measures

Remark: If φ is stable and

C(β) :=∫

Rd

|1− e−βφ(x)|dx < z−1e−1−2βB

then the class G(φ, z, β) is non-empty. Moreover,

kµ(η) ≤ constC(β)−|η|, η ∈ Γ0.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 4 / 24

Glauber dynamics with competition

Dirichlet forms

E+(F, F ) =∫

Γ

∫Rd

|F (γ ∪ x)− F (γ)|2 exp(−E(x, γ))zdxdµ(γ)

G+-dynamics

E−(F, F ) =∫

Γ

∫Rd

|F (γ ∪ x)− F (γ)|2zdxdµ(γ)

G−-dynamics

Corresponding equilibrium dynamics:K/Lytvynov, K/Lytvynov/Rockner

Spectral properties of equilibrium Markov generators:Bertini/Cancrini/Cesi, K/Lytvynov, Wu, K/Minlos/Zhizhina

We will study G− Glauber non-equilibrium stochastic dynamics

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 5 / 24

Glauber dynamics with competition

Pre-generator

Markov pre-generator on Γ:

(LF )(γ) :=∑x∈γ

eβE(x, γ)D−x F (γ) + z

∫Rd

D+x F (γ)dx,

D−x F (γ) = F (γ \ x)− F (γ) death of x ∈ γ;

D+x F (γ) = F (γ ∪ x)− F (γ) birth of x ∈ Rd;

Remark: Operator L is symmetric in L2(Γ, µ).Corresponding Dirichlet form is E−.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 6 / 24

Glauber dynamics with competition

Questions

1 Existence of non-equilibrium dynamics (via general analytic approach)

2 Spectral properties (symbol)

3 Asymptotic behavior of dynamics

4 Speed of convergence to equilibrium

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 7 / 24

Glauber dynamics with competition

Harmonic analysis on configuration space

L : dFt

dt = LFt Γ, F oo〈F,µ〉=

∫Γ F dµ //M1

fm(Γ)

K∗

��

SS

Lenard

L∗ : dµt

dt = L∗µt

L := K−1LK Γ0, G oo〈G, k〉=

∫Γ0Gk dλ

//

K

KK

��

K−1

K(Γ0) L∗ : dkt

dt = L∗kt

K-transform:KG(γ) :=

∑ξbγ

G(ξ), γ ∈ Γ.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 8 / 24

Glauber dynamics with competition

Construction of the process: main steps

The key ”function”: R(η) := C |η|, C > 0

Set of initial states

M1R(Γ) =M1

C(Γ) :={µ ∈M1(Γ) | kµ ≤ const · C|·|

}.

Banach space (”densities” for locally finite measures)

KC := {k : Γ0 → R | k · C−|·| ∈ L∞(Γ0, λ)},

where λ := λ1 is the Lebesgue-Poisson measure with intensity 1.

Banach space (quasi-observables)

LC := L1(

Γ0, C|η|λ(dη)

).

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 9 / 24

Glauber dynamics with competition

Construction of the process: main steps

To show

1 Symbol generates C0-semigroup in LC ;

2 Growth condition: kt(η) ≤ const · C|η| (satisfied !!!);

3 Positive definiteness: preservation of the correlation function property.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 10 / 24

Glauber dynamics with competition

The symbol of the operator (K- image) :

The formal K- image or symbol of the operator L:

L := K−1LK

Symbol of the Glauber dynamics with competition

L := L0 + L1 + L2,

whereL0G(η) := −A(η)G(η), A(η) =

∑x∈η

∏y∈η\x

eβφ(x−y);

L1G(η) := −∑

ξ⊂η, ξ 6=η

G(ξ)∑x∈ξ

∏y∈ξ\x

eβφ(x−y)∏y∈η\ξ

(eβφ(x−y) − 1);

L2G(η) := κ∫

Rd

G(η ∪ x)dx, κ > 0.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 11 / 24

Glauber dynamics with competition

Banach space and domain of the symbol

We considerL : D(L) ⊂ LC → LC

in the Banach space

LC := L1(

Γ0, C|η|λ(dη)

).

The domain of L

D(L) := {G ∈ LC : A ·G ∈ LC} .

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 12 / 24

Glauber dynamics with competition

Existence of a semigroup

Proposition

For any triple of positive constants C, κ and β which satisfies

2eCst(β)C + 2κe2BβC−1 < 3

the symbol L is a generator of a holomorphic semigroup Tt, t ≥ 0 in LC .

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 13 / 24

Glauber dynamics with competition

Idea of proof

1 The operator (L0G)(η) := −G(η)∑x∈η

∏y∈η\x e

βφ(x−y) with

D(L0) =

{G ∈ LC

∣∣∣∣∣∑x∈η

eβE(x, γ\x)G(η) ∈ LC

}.

is a generator of holomorphic semigroup;

2 The operator(L− L0, D(L)

)is relatively bounded w.r.t. (L0, D(L0));

3 The operator(L,D(L)

)is a generator of a holomorphic semigroup in LC

(Kato perturbation theory).

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 14 / 24

Glauber dynamics with competition

Existence of the process

Positive definiteness: approximation arguments

Result of the general construction approach:

Theorem (Kondratiev/K/Minlos)

For any µ ∈M1C(Γ), there exists a non-equilibrim Markov process with generator

L and initial distribution µ provided

2eCst(β)C + 2κe2BβC−1 < 3

holds.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 15 / 24

Glauber dynamics with competition

Symbol: spectral properties

1 The point z = 0 is an eigenvalue of the operator L with the eigenvector

ψ0(η) ={

1, η = ∅,0, η 6= ∅.

2 There exists z0 > 0 such that

I1 = {z ∈ C : Rez > −z0} \ {0}

and

I2 ={z ∈ C : |arg z| < 3π

4

}\ {0}

belong to the resolvent set of the operator L.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 16 / 24

Glauber dynamics with competition

Dual space

The dual rescaled space to the Banach space LC :

KC := {k : Γ0 → R | k · C−|·| ∈ L∞(Γ0, λ)}.

We consider alsoK≥1 := {k ∈ KC : k(∅) = 0}.

L∗ - the corresponding adjoint operator to the operator L on KCDuality:

� G, k �:=∫

Γ0

G · k dλ1 =∫

Γ0

G · C |·| · k

C |·|dλ1, G ∈ LC

Evolution on KC :� TtG, k �=:� G, T ∗t k �

kt := T ∗t k, t ≥ 0.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 17 / 24

Glauber dynamics with competition

Evolution of correlation functions

T ∗t - the semigroup which corresponds to L∗ (in the weak sense)

K≥1 - invariant subspace

T ∗t = T ∗t |K≥1 restriction to the invariant subspace K≥1.

Theorem (Kondratiev/K/Minlos)

The semigroup T ∗t is such that for t ≥ 1

||T ∗t || ≤ const e−z02 t.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 18 / 24

Glauber dynamics with competition

Idea of Proof

Space decomposition

L10 := {G ∈ LC |G = const ψ0}, ψ0(η) =

{1, η = ∅,0, η 6= ∅

and L≥1 := {G ∈ LC : G(∅) = 0}

LC = L10 + L≥1.

L10 is invariant with respect to the semigroup Tt;

Tt/L10

- factor semigroup on the factor space LC/L10

which can be identifiedwith the space L≥1

factor generator (L/L1

0

)[G] = L[G] := [LG],

where [G] ∈ LC/L10

is an equivalent class of the element G ∈ LC .

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 19 / 24

Glauber dynamics with competition

Idea of Proof

Similarity: L corresponds to the operator L11 := L|L≥1 in the sense ofsimilarity, i.e. there exists isomorphism J

J−1L11J = L/L10.

DefineTt := J Tt/L1

0J−1,

which generator coincides with L11.

T ∗t = T ∗t |K≥1 - adjoint semigroup to the semigroup Tt.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 20 / 24

Glauber dynamics with competition

Idea of Proof

The inverse formula for a semigroup via resolvent

− 12πi

∫Υ

(L|L≥1 − z11)−2eztdz = tTt,

where integral is taken over the contour Υ of the form

Υ = {z = −z0/2 + iw : w ∈ R}

The resolvent bound∣∣∣∣∣∣(L|L≥1 − (−z0

2+ iw)11)−1

∣∣∣∣∣∣ ≤ 3

(e−4βB + w2)12

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 21 / 24

Glauber dynamics with competition

Ergodicity

Theorem (Kondratiev/K/Minlos)

Let initial measure µ0 ∈M1(Γ) has the correlation function k0 ∈ KC for someC > 0. Suppose that the parameters of our system satisfy the following conditions

1

exp {e2βBCst(β)C}+ 2κe2βBC−1 <32

2

κe2βBC−1 exp {e2βBCCst(β)} < 1

Denote kµ the correlation function corresponding to µ ∈ G(κ, β). Then,

||kt − kµ||KC≤ const e−

z02 t||k0 − kµ||KC

.

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 22 / 24

Glauber dynamics with competition

Proof

Condition 1: exp {e2βBCst(β)C}+ 2κe2βBC−1 < 32

1 Existence of the semigroup T ∗t in the Banach space KC2 Bound for the semigroup T ∗t

||T ∗t || ≤ const e−z02 t.

Condition 2: κe2βBC−1 exp {e2βBCCst(β)} < 1

1 Existence of µ ∈ G(κ, β)2 Bound for the corresponding correlation function

kµ(η) ≤ C|η|, η ∈ Γ0

rt := kt − kµ = T ∗t (k0 − kµ) ∈ K≥1 and as result

||kt − kµ||KC= ||T ∗t r0||KC

≤ const e−z02 t||k0 − kµ||KC

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 23 / 24

Glauber dynamics with competition

Thank you for attention! :)

Yuri Kondratiev (Bielefeld) Glauber Dynamics in Continuum October 28, 2008 24 / 24

top related