gan系電子デバイス - ohno group / nagoya...

Post on 16-Mar-2018

242 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

TRANSCRIPT

GaN系電子デバイス

水谷孝

名古屋大学工学研究科

ワイドギャップ半導体スクール2007.11.3

内容

• GaNの特徴

• 電子輸送特性と電流利得遮断周波数

• 電流コラプス

• 過渡応答と電流DLTS• SiNパシベーションとMISHEMTs• ノーマリオフFET

GaNの特徴、電子輸送特性と電流利得遮断周波数

AlGaN

GaN

G

PSP

PSP

PPE

S D

AlGaN/GaN HEMTs

Wide gap: 3.4 eVHigh peak velocity: 2.8 x 107 cm/sPolarizationHigh 2DEG density: 1x 1013 cm-2

Breakdown field: 3 MV/cm

Charge neutrality: surface donor

J. Ibbetson et al. Appl. Phys. Lett. 77 (2000) 250

分極のAl組成依存性

O. Ambacher et al. J. Appl. Phys. 85 (1999) 3222

移動度

n-GaN

25,3815

50

106

3 nm

電子移動度の温度依存性

1.極性光学フォノン散乱 a/T2+b/T6

2.音響フォノン散乱(変形ポテンシャル、ピエゾ分極) T-1

3.イオン化不純物散乱(遠隔) 低温でT依存なし、 nS-(1-1.5)(律則移動度: 4.5E5 cm2/Vs)

4.界面ラフネス散乱 低温でT依存なし n2に比例して増加5.(無秩序)合金散乱 低温でT依存なし n2に比例して増加nS

I. Smorchkova et al. J. Appl. Phys. 86 (1999) 4520

AlN中間層による合金散乱の抑制

L. Shen et al. IEEE EDL 222 (2001) 457

0

1

2

3

0 1 2 3

電子

速度

(×10

7 cm/s )

電界 (×10 5 V/cm)

GaN

GaAsSi

SiC

電子速度の電界依存性

光学フォノンエネルギ大(90meV:GaAs系の3倍))→

飽和速度大(約1.7倍)

結合力大が多くの特徴を作っている。

光学フォノンエネルギー、エネルギバンドギャップ、エッチング速度 etc

0 10 205

10

15

20

187℃

103℃

23℃

全遅

延時

間( p

s )

1/ ドレイン電流(mm・A-1)

0 5 10 15 200

5

10

15

23℃103℃187℃

電流利

得遮

断周

波数

(GH

z)

ドレイン電圧(V)

fTおよび全遅延時間のバイアス依存性

真性電流利得遮断周波数、fT: gm0/2πCg

0 50 100 150 2000

5

10

15

Cut

off F

requ

ency

, fT (

GH

z )

Temperature ( ℃ )

0.0

0.5

1.0

1.5

( 107 cm

/s )

←fT

veff→

Effe

ctiv

e E

lect

ron

Vel

ocity

, vef

f

50 100 150 2000.00

0.25

0.50

0.75

1.00

veff移動度

veff↑

電界( kV/cm )180 100 50 25 15 室

温の値で規格化した電子速度、移動度

温度(℃) ℃

fT, veffの温度依存性

M. Akita et al. Phys. Stat. sol (a) 188 (2001) 207

ddcceff

i vl τττ ++=

( )∫=l

xvdx

( )DSGDDS

DS

m

GDGS

m

GDGS

T

RRCR

RRg

CCg

CCf

+++

⋅+

++

==002

τ

遅延時間解析

真性遅延時間 τi 寄生抵抗に起因 ミラー効果に対応

速度の遅い(低電界)領域の寄与大

いずれもコンタクト抵抗の大きいGaN系デバイスでは効く

Without recess

Two-step recess

Inclined recess

Evaluation for 4 types of devices.(Electric field, Electron velocity and Device characteristics)

i-AlGaN 50 nm

i-GaN

DS

2μm1μmG

1μm 2μm1μmG

1μm

i-AlGaN 50 nm

i-GaN

DSi-AlGaN 50 nm

i-GaN

2μm1μmG

1μm

DS

Well recess

2μm1μmG

1μm

i-AlGaN 50 nm

i-GaN

DS

used in device simulationDevice Structure

Y. Aoi et al. Jpn. J. Appl. Phys. 45 (2006) 3368

0

2

4

6

8

10

0 1 2 3 4

pote

ntia

l (V

)

Distance (μm)

VDS

= 10 V

VG= Vth + 2 V

● without recess● well recess● two-step recess● inclined recess

Source Drain

Gate

Potential Distribution

Potential drop under the gate becomes larger for the device with inclined-gate-recess.

-10

0

10

20

30

108 109 1010 1011

Gai

n (d

B)

● with recessfT= 7.94 GHz

VDS

=10V

● without recessfT= 6.40 GHz

Frequency (Hz)

Cut-off Frequency

Higher fT was obtained for the device with inclined-gate-recess structure.

ゲート長:2μm

ゲート長60 nmの微細T型ゲート

短チャネル効果抑制:AlGaN障壁層を薄くする寄生抵抗を小さくする:SiN表面保護膜形成

高いfTの実現:152 GHz東脇(情報通信研究機構)

電流コラプス

-202468

101214

0 5 10 15 20

I D (m

A)

VDS

(V)

ゲート長:1.5μmゲート幅:20μm

VGS

step:1 V

VGS

=3 V

VGS

=-3 V

電流コラプス

ドレインに電圧に依存した特性 ゲートバイアスストレスによるID減少

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1I D

(mA

)

VGS (V)

VDS = 10 VV

GS; -5 > +1 > -5 (V)

before stress

after stress(10 s @ P)P

Drain Current Collapse by Gate Bias Stress

・Current collapse・Counter clockwise hysteresis

Carriers from the gate

・No VTH shift・No side-gate effect

Deep levels in AlGaN and in the buffer : X

Surface states: ○0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1

I D (m

A)

VGS (V)

VDS = 10 VV

GS; -5 > +1 > -5 (V)

before stress

after stress(10 s @ P)P

T. Mizutani et al. IEEE Trans. ED 50 (2003) 2015

Effect of Illumination Position

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1

I D (m

A)

VGS (V)

VDS

= 10 V

VGS

; -5 > +1 > -5 (V)

tH=10 sP

Q1

Q2

illuminating on

D-G

G-S

G-D: Large current recovery

Surface states on G-D region

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

-4 -3 -2 -1 0 1 2 3 4

I D(Q

) (m

A)

x (μm)

VDS

= 10 V, VGS

= 1 V

DGS

resolution

Dependence of the Collapsed Current on the Stress Voltage

Threshold-like behavior of the current collapse

0

2

4

6

8

10

-7 -6 -5 -4 -3 -2 -1 0 1

I D(Q

) (m

A)

VG_Stress

(V)

VDS = 10 V

Importance of a large field for injecting electrons from the gate

Transient of the Current Recovery

Stress: VGS = -5 V, 10 s

Long recovery time

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 50 100 150 200 250 300

I D (m

A)

Time (s)

90 %

35 s

VDS

= 10 V

VGS

= 0 V

コラプスのストレス時間依存性

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

I D(Q

) (m

A)

tStress (s)

VDS

= 10 V

VG_Stress

= -5 V

Long injection time:small surface electron mobiity

Current Collapse Model

1. Electron injection from the gate & capture by the surface states.

2. Virtual gate.3. Long recovery time.

GaN

Source Gate Drain

RS (V -V )GS th

AlGaN

-- - -- - - -0 V -5 V 10 Vvirtual gate

EC

EV

ET1ET2

3.4 eV

Gate

捕獲

放出

Drain

IDB

表面伝導のモデル

ホッピング

表面における電子の伝導

捕獲は放出に比べ、時間が短いため遅い過渡応答には寄与しない

表面での電子移動が遅い

VGS

VDS

S G D

G D

φS Measurement by KFMcantilever

Scan speed2 s/800 nm (H. direction)

126 s/800 nm (V. direction)

VDS= 5 VVGS= 0 V

2 s

64 lines 126 s

LGS = 2 μmLGD = 2 μm Measurements before & after the bias stress.

VGS=-10 V, VDS=5 V, 120 s

KFM: electrostatic force

0.7

0.8

0.9

1

1.1

1.2

1.3

Distance (nm)

Potential (V)

Time (s)0

0 400 800

30 60 90 120

after stress0.7

0.8

0.9

1

1.1

1.2

1.3

Potential (V)

Time (s)0 30 60 90 120

0 400 800

Distance (nm)

GG

Potential Profile / Time Dependenc (G-D)300 nm 300 nm

90 %

75 s

Nakagami et al. Appl. Phys. Lett. 85 (2004) 6028

W/O stress

0.7

0.8

0.9

1

1.1

1.2

1.3

Distance (nm)

Potential (V)

Time (s)0

0 400 800

30 60 90 120

VDS = 5 V

VGS = 0 V

5.0

4.5

4.0

5.5

ID (mA)

Time Dependence of ID & Potential

Time Dependence of ID & Potential

Drain current

Surface potential

Times necessaryto recover to 90% :

75s for surface potential50s for drain current

KFM Image

Low Potential Regions

Pits

Correlation

Y. Eguchi et al. Jpn. J. Appl. Phys. 40 (2001) L589

HEMTのEL分布の比較

GaN HEMTのEL GaAs HEMTのEL

ドレイン電極端で発光を観測 ゲート電極端(ドレイン側)で発光を観測

T. Nakao et al. Jpn. J. Appl. Phys. 41 (2002) 1990

高電界領域形成に及ぼす表面電荷の影響

•理想的なHEMT

高電界: ゲート端(空乏層)

•負の表面電荷をもつHEMT

空乏層電荷(+)を補償

高電界: ドレイン端

GaN

Source Gate Drain

AlGaN+ + ++ + +++ + + ++ + + ++ + + ++

-- -- - - - -

2DEG

--- -

Potential

n

-- - ---- -

-- - -- ---

- -

表面準位の影響

-1

0

1

2

3

4

5

6

3 4 5 6

Pote

ntia

l (V)

x (μm)

Gate Drain

0

5

1

3

2

2.5

NS (x1012 cm-2)

表面トラップ密度 (NS) ≿ 3×1012 cm-2

高電界 ドレイン端

表面トラップの影響大

表面トラップの電子(-)が空乏層電荷(+)を補償

チャネル内電位分布の計算結果

Electroluminescence

w/o Si3N4passivation

Si3N4passivation

Change in the EL location by surface passivation suggesting the change in the field distribution.

Y. Ohno et al. Appl. Phys. Lett. 84 (2004) 2184

フィールドプレートによる電流コラプスの抑制

AlGaN

GaN

GS D

フィールドプレート: 電界集中の緩和と

ゲート電極からの電子注入抑制(NEC)

HEMT with Si3N4 Passivation

DrainSi3N4 100 nm

SourceAl0.3Ga0.7N 5 nmn- Al0.3Ga0.7N 10 nmAl0.3Ga0.7N 5 nm

GaN 3 μm

AlN 40 nmSapphire substrate

Gate

0

2

4

6

8

10

-5 -4 -3 -2 -1 0

w/o Si3N4

with Si3N

4

I D (m

A)

VGS

(V)

before stress

after stress

before & afterstress

VDS

= 10 V

電流コラプス/過渡応答抑制はもぐらたたき

深い準位表面準位、界面準位バルク中準位

へのキャリアトラップと放出

1.深い準位の低減2.システムサイドからの要求に合わせた

デバイス設計

過渡応答の評価と解析

Temperature Dependence of the Drain Current Noise

T. Mizutani et al. Jpn. J.Appl.Phys. 42 424 (2003)

1/f

(Noise Power Spectral Density) x Frequency

Frequency Dispersion of GDS

T. Mizutani et al. Jpn. J. Appl. Phys. 42 (2003) 424

2 2.5 3 3.5 4

low-frequency noisedrain condactance

τ×

T2 (s・

K2)

1000/T (1/K)

1

10

102

103

1/τ~σT2exp(-Ea/kT)

0.47 eV0.43 eV

Comparison of Arrhenius Plots

VDS

ATransient current

VG

DLTS

ID DLTS Measurement Setup

T

ID(t1) - ID(t2)

LT

HTt1 t2

t

t

ID(t)

tID(t)

ID(t)

ID Transient

TP= 10 ms VP = 1 V

Ea#1 0.29 eV#2 0.61 eV#3 0.55 eV

Measured Results

Negative peak #2 : Electron trapPositive peak, #1 & #3: Hole-like trap

10

100

1000

104

2 2.5 3 3.5 4 4.5τ・

T2(s・

K2)

1000/T (K-1)

#3#2

#1

-8

-6

-4

-2

0

2

4

100 200 300 400 500 600T (K)

DLT

S S

igna

l, b1

(μ A

)

#1 #3

#2

T. Mizutani et al. phys. Stat. sol. (a) 200 (2003) 195

Negative Peak: Electron Trap

VG: Positive

VG: Negative

VG

ID

EF

EF

ET

ET

Electron capture at bulk traps

Electron emission at bulk traps

正側のピーク: ホールトラップ的

AIDB

VG

tA1

tA2

表面準位での電子の捕獲・放出

表面準位での電子の放出

(a) t A1

S G D S G D

(b) t A2

IDはAのように徐々に増加

S G D

(c) t B1 (d) t B2

S G D

表面準位での電子の注入・捕獲

IDBB

VG

tB1

tB2

正側のピーク: ホールトラップ的表面準位での電子の捕獲・放出

IDはBのように徐々に減少

Comparison of Arrhenius Plots

1

10

100

1000

104

0 2 4 6 8 10

τ・T2

(s・

K2 )

1000/T (K-1)

#1

#2#3

[1]

[2]

[1] P. Hacke JAP 0.59 eVHVPE/MOCVD GaN

[2] W. Lee APL 0.49 eVMOCVD GaN

[3]

[4]

#2: Commonly observed defects in GaN

[3] T. Mizutani 0.49 eV LF noise/f-dispersion

[4] H. Makihara 0.31eVLF noise

#1: Close to the surface-related LF noise

SiNパシベーションとMISHEMTs

HEMT with Si3N4 Passivation

DrainSi3N4 100 nm

SourceAl0.3Ga0.7N 5 nmn- Al0.3Ga0.7N 10 nmAl0.3Ga0.7N 5 nm

GaN 3 μm

AlN 40 nmSapphire substrate

Gate

0

2

4

6

8

10

-5 -4 -3 -2 -1 0

w/o Si3N4

with Si3N

4

I D (m

A)

VGS

(V)

before stress

after stress

before & afterstress

VDS

= 10 V

-4

0

4

8

12

100 200 300 400 500 600

DLT

S Si

gnal

, b1 (μA

)

T (K)

-4

0

4

8

12

100 200 300 400 500 600T (K)

DLT

S Si

gnal

, b1 (μA

)

Effects of Si3N4 Passivation

w/o Si3N4 with Si3N4

Surface state related hole-trap-like signal disappeared.

Device Structure

Lg=1.5 µmWg=20 µm

・Si3N4 filmECR sputtering

( µ-wave: 500 W, RF: 500 W )

Gate insulator &Surface Passivation film

n=6×1018 cm-3DrainSi3N4 (10 nm)

Source

Al0.3Ga0.7N 3 nm

n- Al0.3Ga0.7N 7 nm

Al0.3Ga0.7N 3 nm

GaN 3 µm

AlN 40 nm

Sapphire substrate

Gate

M. Ochiai Jpn. J. Appl. Phys. et al. (2003) 2278

IG-VGS Characteristics

10-13

10-11

10-9

10-7

10-5

-8 -6 -4 -2 0 2

I G (A

)

VGS

(V)

w/o Si3N

4

with Si3N

4

・Gate leakage current decrease aboutthree orders of magnitude.

ゲートリーク電流

温度依存性なし→トンネル電流

C2F6プラズマ処理によるゲートリークの減少とVTシフト(1.2 V)

S. Mizuno et al. Jpn. J. Appl. Phys. 41 (2002) 5125

H. Hasegawa et al. J. Vac. Sci. Technol. B 21 (2003) 1844

Thin surface barrier model

-202468

101214

0 5 10 15 20

I D (m

A)

VDS

(V)

ゲート長:1.5μmゲート幅:20μm

VGS

step:1 V

VGS=3 V

VGS

=-3 V

電流コラプス

HEMT ID-VDS特性 MIS-HEMT(P-CVD法)ID-VDS特性

MIS構造により電流コラプスの抑制

SiNx膜が表面保護膜の効果

-202468

101214

0 5 10 15 20I D

(mA

)V

DS (V)

ゲート長:1.5μmゲート幅:20μm

VGSstep:1 VVGS=3 V

VGS=-7 V

ID-VGS Characteristics after the Gate Bias Stress

0

1

2

3

4

5

6

7

8

-5 -4 -3 -2 -1 0

before stress

after stress

I D (m

A)

VDS

= 10 V

VGS

(V)

before/after stress

MIS-HEMTHEMT

・Drain current was measured after a stress of VGS = -5 V for 10 s

・Suppression ofthe current collapse in MIS-HEMTs.

Si3N4 film:・Gate insulator・Passivation film

The Effect of Si3N4 Passivation on LF Noise

-200

-180

-160

-140

-120

-100

-80

1 10 100 1000 104 105 106

Noise power spectral density

(dBm/Hz)

frequency(Hz)

∝1/f

∝1/f2

w/o Si3N4

VDS=10V

VGS=0V

with Si3N4

M. Ochiai Jpn. J. Appl. Phys. et al. (2003) 2278

HfO2 AlGaN/GaN MISFETs

020406080

100120140160180

-5 -4 -3 -2 -1 0 1 2 3

w/o HfO2

as fabricated300℃350℃SiNx MIS-HEMT

g m(m

S/m

m)

VGS

(V)

VDS

(10V)

SiNx

w/o, 300 °C

as fab, 350 °C

Ni/Pt/Au

(0001) Sapphire substrateAlN buffer

i-GaN 3μm

Ti/Al

n-Al0.30Ga0.70N 7 nmi-Al0.30Ga0.70N 3 nm

HfO2(10nm)

i-Al0.30Ga0.70N 3 nm

Large transconductance in HfO2 MISFET

ノーマリオフ型FET

AlGaN/GaN HEMTs

Background

Suitable for high-power & high-frequency applications.

-Issues-

・Large parasitic resistance・Precise etching control

Normally-off HEMTs are required for implementing high-power switching system.

W. Saito et a.l, IEEE Trans. Electron Devices, 53 (2006) 356

RC

i-GaN

Source Drain

Gate RC

RGDRGS RREC RREC

10

8

6

4

2

0-1.6 -1.2 -0.8 -0.4 0 0.4

RO

NA

(mΩ

cm2 )

Threshold Voltage Vth (V)

■:Experiment (Wg=3 mm)●:Experiment (Wg=0.6 mm)Lgd=5 μm

AlGaN

・Small forward VGS

ECEF

AlGaN GaNMetal

GaN

ECEF

InGaN AlGaNMetal

+ -

Polarization-induced field in the InGaN cap layer is expectedto raise the conduction band.

AlGaN

GaN

InGaN

G

PSP

PSP

PSP

PPE

PPE

S D

AlGaN/GaN HEMTs with Thin InGaN Cap Layer

T. Mizutani et al. IEEE EDL 28 (2007) 549

-0.08

-0.06

-0.04

-0.02

0

0.02

0 0.1 0.2 0.3 0.4 0.5P

olar

izat

ion

(C/m

2 )In-composition

InxGa1-x

N/GaN

Polarization in InGaN cap layer structure

AlGaN

GaN

InGaN

G

PSP

PSP

PSP

PPE

PPE

S

The piezo-electric polarization (PPE) is much larger than the spontaneous polarization (PSP) in the InGaN cap layer.

D

PSP

PPE+

+

Comparison between deviceswith and without InGaN Cap

0

50

100

150

200

-2 -1 0 1 2Gate voltage (V)

Tran

scon

duct

ance

(mS

/mm

) VDS

= 5V

●:w/o InGaN cap□:with InGaN cap (before etching)

0

0.05

0.1

0.15

0.2

0.25

0.3

-2 -1 0 1 2

VDS

= 5V

●:w/o InGaN cap□:with InGaN cap (before etching)

Gate voltage (V)

Dra

in c

urre

nt (A

/mm

)

⊿Vth = 1.9 V

・Confirmation of normally-off operation.・Smaller gmmax: due to a large parasitic resistance caused by the InGaN cap layer in the access region.

Devices with InGaN cap layer

145 mS/mm

85 mS/mm

Transfer characteristics before and after InGaN etching at the access region

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1 1.5 2

VDS

= 5 V●:before etching□:after etching

Gate voltage (V)

Dra

in c

urre

nt (A

/mm

)

0

50

100

150

200

-1 -0.5 0 0.5 1 1.5 2

VDS

= 5 V●:before etching□:after etching

Gate voltage (V)Tr

ansc

ondu

ctan

ce (m

S/m

m)

130 mS/mm

85 mS/mm

before etching : 85 mS/mmafter etching : 130 mS/mm

0

50

100

150

200

-1 -0.5 0 0.5 1 1.5 2

VDS = 5 V●:before annealing□:after annealing

Gate voltage (V)

Tran

scon

duct

ance

(mS/

mm

)

Transfer characteristicsbefore and after annealing

145 mS/mm130 mS/mm

before annealing : 130 mS/mmafter annealing : 145 mS/mm

(250ºC in N2 atmosphere for 20 min)

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1 1.5 2Gate voltage (V)

Dra

in c

urre

nt (A

/mm

)

VDS = 5 V●:before annealing□:after annealing

Ito et al. ICNS 2007

GaN MOSFET Approach

Decrease in input capacitance Decrease in gm

Issue of MOSFET

K. Matocha et al. , IEEE Trans. Electron Devices, 52, (2005) 6

Highest gm_max= 6 mS/mm

HfO2 gate insulator with a large dielectric constant.

Gate metal overlap over S/D electrodes. i-GaN 1 μm

Ti/Pt/Au

n+ n+

Dopant:Mg=2×1017cm-3

Ti/Al/Ni/Au HfO2(100nm)

p-GaN 1 μm

Transfer Characteristics ofEnhancement-Mode MOSFET

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20Gate voltage (V)

Tran

scon

duct

ance

(mS/

mm

)

VDS

= 8V

Vth=8 V, VGS_max=20 VImax=320 mA/mmgm_max=23 mS/mm μFE=70-90 cm2/Vs

Validity of the present MOSFET technologyStill room for improvements in μ and gm

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

Cap

acita

nce

(pF)

HfO2:50 nm

εr=17.3

Gate voltage (V)0

50

100

150

200

250

300

350

0 5 10 15 20

VDS

= 8V

Gate voltage (V)

Dra

in c

urre

nt (m

A/m

m)

S. Sugiura et al. Electron. Lett. 43 (2007) 952

IG-VGS Characteristics of Enhancement-Mode MOSFET

10-12

10-10

10-8

10-6

10-4

10-2

-10 -5 0 5 10

HEMT

SiO2 MOSFET

HfO2 MOSFET

SiNX MISFET

Gate voltage (V)

Gat

e cu

rrent

(A/m

m)

Lg=2.5 μm

0

1 10-5

2 10-5

0 2 4 6 8 10

HEMT

SiO2 MOSFET

HfO2 MOSFET

SiNX MISFET

Gate voltage (V)G

ate

curre

nt (A

/mm

)

Lg=2.5 μm

HfO2 : better than other dielectrics in respect to the gate leakage current.

p-GaN 1 μm

i-GaN 1 μm

Ti/Pt/Au

n+ n+

Ti/Al/Ni/Au HfO2(100 nm)

i-GaN 3 μm

Ti/Pt/Au

n+ n+

Ti/Al/Ni/Au

i-AlGaN

HfO2(100 nm)

12 nm

2DEG

-idea-high quality interface higher performance

EC

EF

EC

EFmetal HfO2 p-GaN metal HfO2 i-GaNi-AlGaN

AlGaN/GaN Heterostructure

S. Sugiura et alICNS 2007, Las Vegas

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10Drain voltage (V)

Dra

in c

urre

nt (m

A/m

m)

VGS

=9VVGS

= 0~9V, 1Vstep

VGS

= 0V

Lg=2.5 μm

0

100

200

300

400

500

600

700

800

0

50

100

150

200

-2 0 2 4 6 8 10

VDS

= 8V

Gate voltage (V)

Dra

in c

urre

nt (m

A/m

m)

Tran

scon

duct

ance

(mS/

mm

)

I-V characteristics of the fabricated AlGaN/GaN MOSFETs

Vth=3 V ID_max=730 mA/mmgm_max=185 mS/mmμFE=900~1500 cm2/Vs

Vth=8 VID_max=320 mA/mmgm_max=45 mS/mmμFE=70~90 cm2/Vs

Ref. p-GaN MOSFET

Validity of the present MOSFET technology using HfO2 as a gate oxide and AlGaN/GaN heterointerface as a channel

S. Sugiura et al. Electron. Lett. 43 (2007) 952

Fluoride-based plasma treatment

LG = 1.5 μm LDS = 5.5 μm

i-Al0.25Ga0.75N 35 nm

i-GaN

CF4 plasma

S D

Sapphire substrate

Fabrication process1. Isolation, Ohmic contact2. Gate pattern delineation3. Fluoride-based plasma treatment

using CF4 RIE4. Gate electrode formation, Lift-off5. Annealing

Conditions of the plasma treatmentFlow rate:CF4 (30 sccm), Pressure:7.0 Pa

RF power:200 W, Time:90, 120 s

gm-VGS & ID-VGS characteristics

0

20

40

60

80

100

120

140

-8 -6 -4 -2 0 2 4

No treatment90sec120sec

g m [m

S/m

m]

VGS

[V]

VDS:10VLg:1.5μmWg:20μm

0

100

200

300

400

500

600

700

-8 -6 -4 -2 0 2 4

No treatment90sec120sec

I D [m

A/m

m]

VGS

[V]

VDS:10VLg:1.5μmWg:20μm

CF4 plasma Vth (gm-VGS) [V] Vth (ID-VGS) [V]

No treatment –4.7 –3.8

90 s –1.7 –1.2

120 s –0.7 –0.1

DLTS signals

ET1 at 200 K disappeared and ET3 appeared at ~500 K by the plasma treatment

Fluorine atoms formed a new deep level?

Increase of ET3 peak height at deep negative bias

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

100 200 300 400 500 600

w/ow/

DLT

S si

gnal

b1

[pF]

T [K]

ET1 ET2

ET3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

100 200 300 400 500 600

VR = -0.3V

VR = -1.0V

VR = -2.0V

DLT

S si

gnal

b1

[pF]

T [K]

ET3

plasma-treated samplew/ & w/o plasma treatment

ET3 1.51eV 9.9×10−13cm2

Mizuno et al. IWN 2006, Kyoto

Thermal stability

Condition:200°C in a N2atmosphere

Vth shift was not observed even for the devices with plasma treatment.

-5

-4

-3

-2

-1

0

1

0 20 40 60 80 100

Vth

[V]

Keeping time [day]

w/o

w/

オン抵抗と耐圧との関係

10-1

100

101

102

102 103 104

Breakdown voltage (V)

Spe

cific

On-

Res

ista

nce

Ron

A (m

Ωcm

2 )

Si Limit

GaN Limit

Si Super Junction MOSFET

GaN HFET (normally-off)

GaN GIT

Si IGBT (commercial)

SiC Limit

直線は横型FETの計算値

GaN FET

今後の研究開発

1.システムサイドからの要求に合わせたデバイス設計

2.深い準位の低減

高周波応用:ノーマリオン型実用段階

電力応用:ノーマリオフ型が必須更なるオン抵抗低減更なる高耐圧化

top related