galaxy h/w training - gprs rf part asus rd division ia department hw-2 group alan lin 2006/01/23

Post on 26-Dec-2015

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Galaxy H/W TrainingGalaxy H/W Training- GPRS RF Part- GPRS RF Part

ASUS RD DivisionASUS RD DivisionIA Department HW-2 GroupIA Department HW-2 GroupAlan LinAlan Lin2006/01/232006/01/23

2

AgendaAgenda• Introduce to GPRS Function

- Block Diagram- Key Parts List- Aero II Architecture Highlights- Transmitter- Receiver

• Trouble Shooting- Ckt. & Location- AFC- APC- AGC

Introduce to GPRS FunctionIntroduce to GPRS Function

4

GPRS Block DiagramGPRS Block Diagram

T/R SW

PA

RF Chip BB Chip

PMIC

Flash

RF Part

BB Part

PDA Part

FFUART

Analog IQ

Pink : GPRS RFGreen : GPRS Base-BandBlue : PDA

5

Transceiver Block DiagramTransceiver Block Diagram

RF3166

850: 856441

900: 856387

1800: 856409

1900: 856417

LMSP33QA-321

6

Base-band Block DiagramBase-band Block Diagram

3 wire bus for RF transceiver

RF Control T/R switch

Analog IQ signal

Audio RX path

Audio TX path

SIM

7

Key Parts ListKey Parts List

8

Aero II RX HighlightsAero II RX Highlights• Low IF architecture strengths (200kHz IF)

– Has advantages of Super-Heterodyne architectures :– DC Offsets are located outside the band of interest.– IP2 (AM Suppression) requirements are relaxed.– LO Self Mixing is not a problem.

– Has advantages of Direct Conversion architectures :– No IF SAW Filter required – Image Rejection

requirements are simplified.– Single analog down-conversion stage.– IF Analog Signal Processing is at a low frequency.

– Digital IF signal processing.

9

Transceiver Functional Block Transceiver Functional Block RX SAW RX Loop

Universal Baseband Interface

(DAC)

Power Amp.

TX Loop

SynthesizerXTAL(DCXO)

10

Receiver Block DiagramReceiver Block Diagram

Image Reject

Low - IF Receiver

11

Low-IF ReceiverLow-IF Receiver

12

Image RejectionImage Rejection

13

Aero II TX HighlightsAero II TX Highlights

• Offset PLL architecture– Band Pass Noise Transfer Function attenuates noise in

RX band.– TXVCO is a constant-envelope signal that reduces the

problem of spectral spreading caused by non-linearity in the PA.

– Eliminates need for TX SAW Filter.

• TX transmit out buffer– Helps eliminate spurs and pulling issues.

14

Transmitter Block DiagramTransmitter Block Diagram

Offset PLL

15

Offset PLLOffset PLL- The OPLL acts as a tracking band-pass filter tuned to the

desired channel frequency. - The important difference between a PLL and the OPLL is

that the frequency modulation of the reference input is

reproduced at the output of the Tx-VCO without scaling

• Advantage - Low noise floor and spurs - Pulling of the transmit VCO is reduced -Truly constant envelope Output from VCO

• Disadvantage - Only possible with constant

envelope modulation scheme

16

DCXO ArchitectureDCXO ArchitectureFrequency adjusted by two variable capacitances

- Cdac: coarse tuning

- Cafc: fine tuning

Trouble ShootingTrouble Shooting

18

Measurement EquipmentMeasurement Equipment

• Agilent 8960 / CMU200

• Power Supply

• Scope

• Spectrum

• Passive Probe with DC Block

Spectrum Analyzer

I Q RF

GSM tester

Phone Tool

OscilloscopeDUT

Data cable

RF adaptor

19

Base Station SetupBase Station Setup

• Base Station Test Mode Setup

GSM850 EGSM DCS PCSMode BCH + TCH BCH + TCH BCH + TCH BCH + TCH

BS Power -60dBm, -20dBm -60dBm, -20dBm -60dBm, -20dBm -60dBm, -20dBmBCH 190 62 700 661TCH 190 62 700 661

TX PCL 5, 19 5, 19 0, 15 0, 15

20

Antenna Switch ConnectorAntenna Switch Connector

Antenna Switch Connector

Bottom Side

21

PA & Front-endPA & Front-endTop Side

T/R Switch

High band Matching

PA

Low band Matching

22

PA & Front-endPA & Front-end

PALEVEL (VRAMP)

High bandMatching

Low bandMatching

T/R Switching

PA

23

RX PathRX PathTop Side

T/R Switch

RX SAW

Transceiver

XTAL

24

RX PathRX Path

RX SAW

RX SAWT/R Switching

Transceiver

XTAL

25

T/R Control TableT/R Control Table

26

Trouble ShootingTrouble Shooting

• AFC Fail• APC Fail• AGC Fail• ORFS due to Modulation Fail

@ -200kHz & +400kHz fail• Others

27

AFC & TX Testing NodesAFC & TX Testing NodesA

B

CD

EF

H

G

28

AFC FailAFC Fail• Check antenna switch connector• Check Vramp & PA output power• Check 26MHz output

PA

29

APC FailAPC Fail• If TX current is right

- Check antenna switch connector - Check T/R switch- Check PA matching circuit

T/R SW

Low-band in

Low-band out

VrampHigh-band in

High-band out

30

APC FailAPC Fail• If TX current is small

- Check TXVCO output- Check Vramp- Check PA- Check VBAT

T/R SW

Low-band in

Low-band out

VrampHigh-band in

High-band out

31

AFC & TX SignalsAFC & TX Signals

Node Description Value Fig.A XOUT at C957 26MHz, 1.6V 1.1B TXIQ 4.6ms, 1.2V(max) 1.2C TXVCO at C947(GSM850/EGSM) PCL : 19, 902.4MHz ref. 1.3D TXVCO at C944 (DCS/PCS) PCL : 15, 1747.8MHz 1.3E Power at T/RSW(C930) Low-band in PCL : 19, 902.4MHz ref. 1.4F Power at T/RSW(C933) High-band in PCL : 15, 1747.8MHz 1.4

G Power at C946PCL : 19, 902.4MHzPCL : 15, 1747.8MHz

1.4

H VrampEGSM : 1.3V (PCL5), 0.3V (PCL19)DCS : 1.28V (PCL0), 0.3V (PCL15) 1.5

32

26MHz & TXIQ26MHz & TXIQ

Fig. 1.1 26MHz

Fig. 1.2 TXIQ

33

TXVCOTXVCO

Fig. 1.3 TXVCO DCS Ch700 : 1747.8MHz

Fig. 1.4 PA Out DCS Ch700 : 1747.8MHz

34

Vramp Vramp

Fig. 1.5 Vramp

35

RX Testing NodesRX Testing Nodes

A

BE

D

C

F

36

AGC FailAGC Fail• Check antenna switch connector• Check T/R switch• Check SAW• Check RXIQ

RX SAW

37

RX SignalsRX Signals

Node Description Value Fig.A XOUT at C957 26MHz, 1.6V 2.1B Power at C946 EGSM Ch62 : 947.4MHz, BS: -20dBm ref. 2.2C Power at EGSM SAW out EGSM Ch62 : 947.4MHz, BS: -20dBm 2.2D Power at DCS SAW out DCS Ch700 : 1842.8MHz, BS: -20dBm ref.2.2E Power at PCS SAW out PCS Ch661 : 1960MHz, BS: -20dBm ref.2.2F RXIQ EGSM Ch62 : 947.4MHz, BS: -20dBm 2.3

38

26MHz & T/R Switch Out26MHz & T/R Switch Out

Fig. 2.1 26MHz Fig. 2.2 EGSM Ch62 : 947.4MHz

39

RX IQRX IQ

Fig. 2.5 RX IQ

top related