functional itô calculus and pdes for path-dependent options bruno dupire bloomberg l.p. rutgers...

Post on 14-Jan-2016

235 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Functional Itô Calculus and

PDEs for Path-Dependent Options Bruno Dupire

Bloomberg L.P.

Rutgers University Conference

New Brunswick, December 4, 2009

Outline1) Functional Itô Calculus

• Functional Itô formula• Functional Feynman-Kac• PDE for path dependent options

2) Volatility Hedge

• Local Volatility Model• Volatility expansion• Vega decomposition• Robust hedge with Vanillas• Examples

1) Functional Itô Calculus

Why?

process. theof history,or

path,current theof functions it to extend We

processes. of functions with deals calculus Itô

prepayment MBS path rateinterest

reaction viralantigen toexposure

payoffdependent path history price

level water etemperatur

:patternscertain on depends

)(

eConsequencCause

link The .cumulative isy uncertaint ofimpact theoften,Most

ttf

t XfyX

Review of Itô Calculus

• 1D

• nD

• infiniteD

• Malliavin Calculus

• Functional Itô Calculus

current value

possible evolutions

Functionals of running paths

)( and )( is at of valueThe

)(,for ,: :functional

}t][0, functions RCLL bounded{

t][0, sections starting allon but T][0,path wholeon theonly not defined sFunctional

],0[

tXxsXtsX

XfXff

tttt

ttt

Ttt

t

0 T

12.87

6.32

6.34

Examples of Functionals

hit is last value First time-

average rolling ofMax -

variablesstate ofnumber Infinite

(3) rangeon Option -

(2)Asian -

(1)European -

: time)(excluding variablesstate ofnumber Finite

priceoption dependent path of caseimportant thecovers onelast The

price greplicatin-Super -

valuefinal ofn expectatio lConditiona-

drawdownCurrent -

averageCurrent -

Derivatives

t

XfXfXf

h

XfXfXf

tttstXsXtssXsX

htXtXtssXsX

fX

ttt

ttt

tht

htx

tttttt

thtt

ht

tt

Tttt

)()(lim)(

derivative Time

)()(lim)(

derivative Space

],[for )()( for )()(

)()( for )()(

,:,For

},t][0, functions RCLL bounded{

,

0

0

,,

],0[

Examples

00

)(2010

tt

ttx

t

t

ut

xf

xxf

QVduxxf

t

hf

x

hf

txhXf tt

t

x

then ),,()( If

Topology and Continuity

tsYXYXd

stYX

ststst

st

,),(

) assumecan (we ,in , allFor

:distance -

)()(),(

,:0,0

: if at continuous is : functionalA

:continuity -

tsst

s

t

XfYfYXd

Y

Xf

t s

X

Y

Functional Itô Formula

xdfdtfdxfdf

xdXfdtXfdxXfXfXf

Tf

Xx

tCxC

smoothf

xxtx

T

ttxx

T

tt

T

ttxT

t

2

1

notation, concise morein or,

)(2

1)()()()(

, 0 allfor and functionalsmooth allfor then,

t],[0,over path its denotes and martingale-semi continuous a is If

Theorem

.continuous- s themselvesderivative e with thes,in and in

,continuous- isit if is : functional a :Definition

0000

12

Fragment of proof

))()((

))()((

))()((

)()(

ff

ff

ff

ffdf

Functional Feynman-Kac Formula

))( martingale the toformula Itô functional(apply

0)(2

)()()()()()(

satisfiesit smooth, is if Then,

)()(],,[for

)()(],,0[for where

]|)([)(

by : define We. :,: ,integrablesuitably For

)()(

payoff.dependent path and dynamics Markovnon FK to oftion Generalisa

0)(

2

)(

t

duXr

txxt

tttxttt

uuuu

tT

ttT

duZr

t

T

tttt

Xfe

XfXb

XfXrXfXaXf

f

dWZbduZadzTtu

uYuZtu

YZZgeEYf

frgg

dWXbdtXadx

t

u

T

tu

Delta Hedge/Clark-Ocone

ttTtt

T

TT

ttxt

T

TT

ttxtt

ttxt

T

TT

ttTt

dWXXgDEXbXXgEXg

dWXfXbXfXfXg

dWXfXbXdf

r

dWXfXbXXgEXg

YZZgEYff

]|)([)(]|)([)(

:CalculusMalliavin from

formula Ocone-Clark the tocompared becan It

)()()()()(

and

)()()(

,0 with Kac-Feynman and Itô functional From

)()(]|)([)(

:tionRepresenta Martingaleexplicit thehave then we

smooth, is ]|)([)(by defined If

00

00

00

P&L

St t

St

Break-even points

t

t

Option Value

St

CtCt t

S

Delta hedge

P&L of a delta hedged Vanilla

Functional PDE for Exotics

dependent.path be will and generalin However,

. variablesstate ofnumber infinitean even with options,dependent

pathfor holds also optionsEuropean for off- trade The

0))()(()()(2

1)(

satisfiesit then

smooth, is ]|)([)(by given If

2

)(

Γ

Γ/

XfxXfXrXfbXf

YZZgeEYff

tttxttxxtt

ttT

duZr

t

T

tu

Classical PDE for Asian

term.convection bothering a is

02

10

2

1

,0

),,()(, Define ),( Assume

)()( :CallAsian of Payoff

2

222

2

2

0

0

I

lx

x

lb

I

lx

t

lfbf

x

lf

x

lfI

t

l

I

lxfxI

tIxlXfduxIdWtxbdx

KduxXg

xxt

xxxx

ttt

t

tttutttt

T

uT

Better Asian PDE

0))()(2(2

10

2

1

)()(2

)()(

0

),,()(,)(][ Define

2

22

2

2

222

2

22

2

2

2

00

J

htT

Jx

htT

x

hb

t

hfbf

J

htT

Jx

htT

x

hf

J

htT

x

hf

tTJ

t

hfJ

tJxhXfxtTduxduxEJ

xxt

xx

x

x

tt

tttt

t

u

T

utt

2) Robust Volatility Hedge

Local Volatility Model• Simplest model to fit a full surface• Forward volatilities that can be locked

CqK

CKqr

K

CK

TK

T

C

dWtSdtqrS

dS

2

22

2

2

,

),()(

Summary of LVM

• Simplest model that fits vanillas

• In Europe, second most used model (after Black-Scholes) in Equity Derivatives

• Local volatilities: fwd vols that can be locked by a vanilla PF

• Stoch vol model calibrated

• If no jumps, deterministic implied vols => LVM

),(][ 22 tSSSE loctt

S&P500 implied and local vols

S&P 500 FitCumulative variance as a function of strike. One curve per maturity.Dotted line: Heston, Red line: Heston + residuals, bubbles: market

RMS in bpsBS: 305Heston: 47H+residuals: 7

Hedge within/outside LVM

• 1 Brownian driver => complete model

• Within the model, perfect replication by Delta hedge

• Hedge outside of (or against) the model: hedge against volatility perturbations

• Leads to a decomposition of Vega across strikes and maturities

Implied and Local Volatility Bumps

implied to

local volatility

P&L from Delta hedging

T

txxtt

T

ttx

T

txxt

T

tt

T

ttxTT

ttt

txxttt

tT

Q

tT

ttt

dtYftyvvdyYfXf

dtYfvdtYfdyYfYfYfYg

xydWvdyy

XftxvXf

XXgEXffg

dWtxvdxqr

v

0 000

0000

00

0

0

)()),((2

1)()(

)(2

1)()()()()(

formula, Itô functional by the , with follows If

0)(),(2

1)( PDE, functionalBy

])([)(by define,For

.),(,0 Assume

0

Model Impact

T

ttxxtQv

g

T

txxttQ

gg

vT

Qg

T

txxtt

T

ttxTT

dtdxxxXftxvvEtxv

dtXftxvvEvv

vtxXYgEv

dtYftyvvdyYfXfYfYg

v

v

v

0 00

0 00

0

0 000

])()),([(),(2

1)(

])()),(([2

1)()(

,for density n transitio the),( and ])([)( with Hence,

)()),((2

1)()()()(

Recall

Comparing calibrated models

][],[

:alive""by ngconditioni ofimpact theevaluate toamountsIt

),(][ options, vanillasame on the calibrated are and If

],)),([(),(

),(2

1

],)()),([(),(),(2

1

])()),([(),(2

1)()(

option,Barrier out -knock aFor

])()),([(),(2

1)()(

Recall

00

0 02

2

0 0

0 00

0 00

xxvEalivexxvE

txvxxvEvv

dtdxalivexxtxvvEx

txftx

dtdxalivexxXftxvvEtxPtx

dtdxxxXftxvvEtxvv

dtdxxxXftxvvEtxvv

ttQ

ttQ

ttQ

T

ttQalivev

alive

T

ttxxtQ

alivev

T

ttxxtQv

gg

T

ttxxtQv

gg

vv

v

v

v

v

v

Volatility Expansion in LVM

])([),(2

1),( where

),(),()(

])([),(),(2

1)()(

),(),( : form theof LVM a is wherecase In the

])()),([(),(2

1)()(

general,In

00

00

00

000

00

0 00

xxXfEtxtxm

dtdxtxutxmv

dtdxxxXfEtxutxvuv

dWtxutxvdxuvv

dtdxxxXftxvvEtxvv

ttxx

Quv

T

g

T

ttxx

Quvgg

tttt

T

ttxxtQv

gg

uv

uv

v

Fréchet Derivative in LVM

)derivative(Fréchet ),(at variancelocal the to ofy sensitivit theis

])([),(2

1),(

where

),(),(

])([),(),(2

1

)()(lim,

:satisfies ofdirection in the derivativeFréchet The

])([),(),(2

)()(

,particularIn

00

00

00

0

0

00

0v

000

txg

xxXfEtxtxm

dtdxtxutxm

dtdxxxXfEtxutx

vuvu

u

dtdxxxXfEtxutxvuv

ttxx

Qv

T

T

ttxx

Qv

ggg

T

ttxx

Quvgg

v

v

uv

One Touch Option - Price

Black-Scholes model S0=100, H=110, σ=0.25, T=0.25

One Touch Option - Γ

PtSmTO ..2

1),(:..

Up-Out Call - Price

Black-Scholes model S0=100, H=110, K=90, σ=0.25, T=0.25

Up-Out Call - Γ

PtSmUOC ..2

1),(:

Black-Scholes/LVM comparison

price. LVM reach the toenables Scholes-Black theofinput y volatilitno case, In this

Vanilla hedging portfolio I

?),(function get the can we How

),(])([])([),(

t)(x, allfor ifonly and if moves volatility

small all hedges vanillasof ),( Portfolio

.at variancelocal theto

ofy sensitivit theis ])([),(2

1),( Recall

00

00

2

2

,

g

TK

txhxxXfExxXEx

txPF

dTdKCTKPF

(x,t)

xxXfEtxtxm

ttxx

Q

ttPFxx

Q

TK

ttxx

Qv

vv

v

Vanilla hedging portfolios II

bumps. volimplied y tosensitivit no hence

bumps vollocal y tosensitivit no has and 0]),()([,,

00 with 0)(then 2

1)( take weIf c)

.)()( Thus,

])([),( with ),(),(]),()([),(

),(),)((),( b)

)(),(condition boundary with 0)( , call aFor

2

1)( define we),,(For a)

2

2

20

2

2

2

2

2

2

2

,

2,

2

2,

2

,

20

2

0

00

PF-fxxtxx

PFXfEtx

kk(x,T)kLx

hv

t

hhL

hLkL

xxXfEtxhtxx

PFtxhxxtx

x

PFXfEtxk

txtxx

PFLdTdKCTKPF

xTxx

C

x

CLC

x

kv

t

kkLtxk

ttxx

Q

ttxx

Q

ttxx

Q

TK

KTKTK

TK

v

vv

Example : Asian option

.at variancelocal theto ofy sensitivit theis ])([),(2

1),(

1maturity20 volatility100S, )( : off-Pay v

g

00

0

0

00 (x,t) xxXfEtxtxm

TvKKdtxXgdWdx

ttxx

Qv

T

tttt

v

K

T

KT

Asian Option Hedge

KT

20

2

,

),(),(

2

1),(),(

),( with hedgeatility Robust vol

x

TKhTKv

t

TKhTK

dTdKCTKPF TK

K

T

Fwd Start Option Hedge

dTdKCTKPF

xxXg

TK

TTT

,),( with hedgeatility Robust vol

)()(122

Γ/VegaLink

Conclusion

• Itô calculus can be extended to functionals of price paths

• Price difference between 2 models can be computed

• We get a variational calculus on volatility surfaces

• It leads to a strike/maturity decomposition of the volatility risk of the full portfolio

top related