functional architecture of human thermoregulation · 2015-05-28 · functional architecture of...

Post on 18-Jun-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

FUNCTIONAL ARCHITECTURE OF HUMAN THERMOREGULATION

Andreas D. Flouris

FAME LaboratoryDep. of Exercise ScienceUniversity of Thessaly

Greece

THERMOREGULATION IN THE HEAT 

2

Afferent Input

Integration CommandBODY 

TEMPERATURE

Negative Feedback Loop

Peripheral and Central Thermal Sensors

Central Thermosensors

THERMOREGULATION

Autonomic/endocrinethermoregulation– finite capacity

3

Behaviouralthermoregulation– near‐infinite capacity

THERMOSENSORS

Transient receptor potential (TRP) ion channels– expressed in pain‐ and temperature‐sensitive neurons– 30 proteins divided into 6 sub‐families– central axons project to lamina I– signals are carried to the hypothalamus, the brainstem, and the insular cortex

4

Flouris & Schlader, SJSMM, 2015Romanovsky, AJP‐RICP, 2007Craig, Nat Rev, 2009

AUTONOMIC THERMOREGULATION

Reductions in skin/core temperature (cold)

5

Combined responses

↓ rate of heat loss to the environment

↑ rate of metabolic heat production

Heat balance

– Heat conservation peripheral vasoconstriction

– Heat generation shivering thermogenesis

non‐shivering thermogenesis

Heat balance

↑ rate of heat loss to environment

AUTONOMIC THERMOREGULATION

Increases in skin/core temperature (heat/work)

6

Combined responses

– Heat dissipation peripheral vasodilation

sweating

AUTONOMIC THERMOREGULATION

Each effector response is characterised by a mean body temperature onset threshold beyond which it increases proportionally to the change in core and/or skin temperature Bligh, JAP, 2006

7

AUTONOMIC THERMOREGULATION

8 Kenny & Flouris, 2014

PASSIVE HEAT EXPOSURE

9

Net heat load

Metabolic heat production

Evaporative heat loss

Dry heat exchange

Kenny & Flouris, 2014

Semi nude adult male30°C 36°C

PASSIVE HEAT EXPOSURE

Peripheral vasodilation serves to decrease the temperature gradient between the skin and the environment, thus                 attenuating the rate of dry heat gain– evaporation is the only means by which the body can lose heat in hot conditions

10

Compensable conditions

Uncompensableconditions

Heat balance Rate of heat storage = 0

↑ core temperature+ heat storage

EVAPORATION

Water evaporation from the skin and the membranes of the respiratory tract is a vital means of dissipating heat– conversion of water molecules from fluid to gas requires large amounts of energy (~600 kcal/L)

11

Rest Work% kcal/min % kcal/min

Conduction & Convection 20 0.3 15 2.2Radiation 60 0.9 5 0.8Evaporation 20 0.3 80 12Total 100 1.5 100 15

THERMOREGULATION DURING WORK

12

At the beginning of work, heat production rises rapidly due to increased metabolism primarily in the working muscles

The mechanisms of heat dissipation react with significantdelay and so body temperature rises at the start of work

When/If heat dissipation reaches heat production (i.e., attainment of heat balance), core temperature will stabilize

Flouris & Cheung, EJAP, 2010

THERMOREGULATION DURING WORK

13 Kenny & Flouris, 2014

THERMOREGULATION

Autonomic/endocrinethermoregulation– finite capacity

14

Behaviouralthermoregulation– near‐infinite capacity

THERMAL BEHAVIOUR

15

THERMOSENSORS

Transient receptor potential (TRP) ion channels– expressed in pain‐ and temperature‐sensitive neurons– 30 proteins divided into 6 sub‐families– central axons project to lamina I– signals are carried to the hypothalamus, the brainstem, and the insular cortex

16

Flouris & Schlader, SJSMM, 2015Romanovsky, AJP‐RICP, 2007Craig, Nat Rev, 2009

CEREBRAL LOCI OF THERMAL FEELINGS

In addition to the hypothalamus and the brainstem, lamina I also activates the  insular cortex

Integration within the insulagenerates the template for a “feeling”– a combined representation of homeostatically salient features of the individual’s internal and external environment

17Craig, Nat Rev, 2009Craig, Ann N Y Acad Sci, 2011

Subjective cooling

CEREBRAL LOCI OF THERMAL FEELINGS

In addition to the hypothalamus and the brainstem, lamina I also activates the  insular cortex

Integration within the insulagenerates the template for a “feeling”– A: activation due to innocuous cooling (neck; hand)

– B: activation due to noxious heating(face; arm; leg; overlap)

18

Hua et al, AJP‐RICP, 2005Brooks et al, Neuroimage, 2005

NEURAL BASIS OF THERMAL BEHAVIOUR

The preoptic anterior hypothalamus does not play a major role in behavioral thermoregulation

The cerebral neural pathways important for behavioural thermoregulation have little to dowith triggering thermoeffector responses            (i.e., autonomic thermoregulation)

19

Craig, Ann N Y Acad Sci, 2011Craig, Nat Rev, 2009

MEASURES OF THERMAL PERCEPTION

Thermal comfort: subjective indifference with the thermal environment

Thermal sensation: relative intensity of the temperature being sensed

Perceived exertion: subjective perception of effort

20

Gagge et al., Environ Res, 1967

Borg, MSSE, 1982

Gagge et al., Environ Res, 1967

THERMAL BEHAVIOUR DURING WORK

21

Heat: ~425 WCatabolism: 

500 W

External work: 75 W

THERMAL BEHAVIOUR DURING WORK

22

Cycling (most efficient physical task)~20% of energy used for work

Whipp & Wasserman, JAP, 1972

Heat: ~400 W

Catabolism: 500 W

External work: 100 W

THERMAL BEHAVIOUR DURING WORK

23

Heat: ~400 W

Catabolism: 500 W

External work: 100 W

↓ performance & health

Schlader et al., JTB, 2011Ely et al, MSSE, 2010Tatterson et al, JSMS, 2000

↑ core temperature

THERMAL BEHAVIOUR DURING WORK

Changes in work intensity have a major impact on heat balance:           S = M – (± W) ± (R + C+ K) – E

24

Flouris & Schlader, SJMSS, 2015Flouris et al., EJAP, 2011Schlader et al., JTB, 2011

changes in work intensity affect thermoregulation and are 

considered thermoregulatory behaviors

BEHAVIOURAL THERMOREGULATION

25

CONSCIOUS RESPONSE TO THERMAL INPUT

What is the basis of our choices for our thermal state?

BASIS OF THERMAL DECISIONS

Shuttle‐box model:– freedom of movement between two thermally extreme environments

– thermoregulatory behavior = moment at which a conscious decision is made Tre Tsk thermal comfort time in chamber

26

45°C 10% RH

10°C 50% RH

Schlader et al., Physiol Behav, 2009

BASIS OF THERMAL DECISIONS

27

1

2

3

4

5

6

7

8

9

10

29.0

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

0 10 20 30 40 50 60 70 80

Thermal Com

fort

Tempe

rature ( °C)

Time (min)

Tc

Ts

ThC

Schlader et al., Physiol Behav, 2009

BASIS OF THERMAL DECISIONS

High probability of exit      at Tsk:– cold to hot: 29.6 to 26.4°C– hot to cold: 34.1 to 36.2°C

Behaviour was mainly  driven by Tsk and not by Tc

28 Schlader et al., Physiol Behav, 2009

THERMAL VS. NON‐THERMAL STIMULI

Cycling protocol: – RPE clamped at 16 (hard – very hard)– liquid conditioning garment: 55°C

Conditions:– control– thermal face cooling– non‐thermal face cooling (menthol)– thermal face heating– non‐thermal face heating (capsaicin)

29 Schlader et al., Physiol Behav, 2011

THERMAL VS. NON‐THERMAL STIMULI

30

Cap

saic

in

Men

tho

l

War

min

g

Co

olin

g

Co

ntr

ol

Schlader et al., Physiol Behav, 2011

==

THERMAL VS. NON‐THERMAL STIMULI

31

Similarly Hot

Cooling

Warming

Schlader et al., Physiol Behav, 2011

THERMAL VS. NON‐THERMAL STIMULI

Facial temperature and thermal perception are capable modulators of behaviouralthermoregulation and work output

Physical (thermal) temperature change is not a necessary requirement for the initiation of thermoregulatory behaviour

32

Schlader et al., Physiol Behav, 2011

33Core Temperature

↑ Skin Temperature

↑ Perceived Exertion

↓ Work Intensity

Thermal Perception(↑ warmth discomfort)

Cardiovascular Strain(↓ peak oxygen uptake)

Heat exposure

Flouris & Schlader, SJMSS, 2015

FUNCTIONAL ARCHITECTURE OF HUMAN THERMOREGULATION

Andreas D. Flouris

FAME LaboratoryDep. of Exercise ScienceUniversity of Thessaly

Greece

top related