exponentially-fitted methods applied to fourth-order boundary ...mvdaele/voordrachten/kos2008.pdf•...

Post on 20-Nov-2020

3 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Exponentially-fitted methods applied tofourth-order boundary value problems

M. Van Daele, D. Hollevoet and G. Vanden Berghe

Department of Applied Mathematics and Computer Science

Sixth International Conference of Numerical Analysis andApplied Mathematics, Kos, 2008

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Outline

IntroductionAn exampleExponential fitting

Fourth-order boundary value problemsThe problemExponentially-fitted methodsParameter selection

Numerical examplesFirst exampleSecond example

Conclusions

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Introduction

In the past 15 years, our research group has constructedmodified versions of well-known

• linear multistep methods

• Runge-Kutta methods

Aim : build methods which perform very good when the solutionhas a known exponential of trigonometric behaviour.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Linear multistep methods

A well known method to solve

y ′′ = f (y) y(a) = ya y ′(a) = y ′a

is the Numerov method (order 4)

yn+1 − 2 yn + yn−1 =1

12h2 (f (yn−1) + 10 f (yn) + f (yn+1))

Construction :impose L[z(t); h] = 0 for z(t) ∈ S = {1, t , t2, t3, t4} where

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Linear multistep methods

A well known method to solve

y ′′ = f (y) y(a) = ya y ′(a) = y ′a

is the Numerov method (order 4)

yn+1 − 2 yn + yn−1 =1

12h2 (f (yn−1) + 10 f (yn) + f (yn+1))

Construction :impose L[z(t); h] = 0 for z(t) ∈ S = {1, t , t2, t3, t4} where

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

Introduction Fourth-order boundary value problems Numerical examples Conclusions

A model problem

Consider the initial value problem

y ′′ + ω2 y = g(y) y(a) = ya y(a) = y ′a .

If |g(y)| ≪ |ω2 y | then

y(t) ≈ α cos(ω t + φ)

To mimic this oscillatory behaviour, one could replacepolynomials by trigonometric (in the complex case :exponential) functions.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

A model problem

Consider the initial value problem

y ′′ + ω2 y = g(y) y(a) = ya y(a) = y ′a .

If |g(y)| ≪ |ω2 y | then

y(t) ≈ α cos(ω t + φ)

To mimic this oscillatory behaviour, one could replacepolynomials by trigonometric (in the complex case :exponential) functions.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

A model problem

Consider the initial value problem

y ′′ + ω2 y = g(y) y(a) = ya y(a) = y ′a .

If |g(y)| ≪ |ω2 y | then

y(t) ≈ α cos(ω t + φ)

To mimic this oscillatory behaviour, one could replacepolynomials by trigonometric (in the complex case :exponential) functions.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Numerov methodConstruction : impose L[z(t); h] = 0 for z(t) ∈ S with

S = {1, t , t2, sin(ω t), cos(ω t)}

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2 λ) f (yn) + λ f (yn+1))

λ =1

4 sin2 θ2

−1θ2 θ := ω h

=1

12+

1240

θ2 +1

6048θ4 + . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Numerov methodConstruction : impose L[z(t); h] = 0 for z(t) ∈ S with

S = {1, t , t2, sin(ω t), cos(ω t)}

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2 λ) f (yn) + λ f (yn+1))

λ =1

4 sin2 θ2

−1θ2 θ := ω h

=1

12+

1240

θ2 +1

6048θ4 + . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Numerov methodConstruction : impose L[z(t); h] = 0 for z(t) ∈ S with

S = {1, t , t2, sin(ω t), cos(ω t)}

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2 λ) f (yn) + λ f (yn+1))

λ =1

4 sin2 θ2

−1θ2 θ := ω h

=1

12+

1240

θ2 +1

6048θ4 + . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Numerov methodConstruction : impose L[z(t); h] = 0 for z(t) ∈ S with

S = {1, t , t2, sin(ω t), cos(ω t)}

L[z(t); h] := z(t + h) + α0 z(t) + α−1 z(t − h)

−h2 (

β1 z ′′(t + h) + β0 z ′′(t) + β−1 z ′′(t − h))

yn+1 − 2 yn + yn−1 = h2 (λf (yn−1) + (1 − 2 λ) f (yn) + λ f (yn+1))

λ =1

4 sin2 θ2

−1θ2 θ := ω h

=1

12+

1240

θ2 +1

6048θ4 + . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF methodsGeneralisation : to determine the coefficients of a method, weimpose conditions on a linear functional. These conditions arerelated to the fitting space S which contains

• polynomials :{tq|q = 0, . . . , K}

• exponential or trigonometric functions, multiplied withpowers of t :

{tq exp(±µt)|q = 0, . . . , P}

or, with ω = i µ,

{tq cos(ωt), tq sin(ωt)|q = 0, . . . , P}

EF method can be characterized by the couple (K , P)Classical method : P = −1number of basis functions : M= 2 P + K + 3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Examples

M = 2 P + K + 3

(K , P)

M = 2 M = 4 M = 6 M = 8 M = 10(1,−1) (3,−1) (5,−1) (7,−1) (9,−1)(−1, 1) (1, 0) (3, 0) (5, 0) (7, 0)

(−1, 1) (1, 1) (3, 1) (5, 1)(−1, 2) (1, 2) (3, 2)

(−1, 3) (1, 3)(−1, 4)

(1, 2) =⇒ S ={

1, t , exp(±µt), t exp(±µt), t2 exp(±µt)}

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Examples

M = 2 P + K + 3

(K , P)

M = 2 M = 4 M = 6 M = 8 M = 10(1,−1) (3,−1) (5,−1) (7,−1) (9,−1)(−1, 1) (1, 0) (3, 0) (5, 0) (7, 0)

(−1, 1) (1, 1) (3, 1) (5, 1)(−1, 2) (1, 2) (3, 2)

(−1, 3) (1, 3)(−1, 4)

(1, 2) =⇒ S ={

1, t , exp(±µt), t exp(±µt), t2 exp(±µt)}

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Exponential FittingL. Ixaru and G. Vanden BergheExponential fittingKluwer Academic Publishers, Dordrecht, 2004

η−1(Z ) =

{

cos(|Z |1/2) if Z < 0cosh(Z 1/2) if Z ≥ 0

η0(Z ) =

sin(|Z |1/2)/|Z |1/2 if Z < 01 if Z = 0sinh(Z 1/2)/Z 1/2 if Z > 0

Z := (µ h)2 = −(ω h)2

ηn(Z ) :=1Z

[ηn−2(Z ) − (2n − 1)ηn−1(Z )], n = 1, 2, 3, . . .

η′n(Z ) =12ηn+1(Z ), n = 1, 2, 3, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Exponential FittingL. Ixaru and G. Vanden BergheExponential fittingKluwer Academic Publishers, Dordrecht, 2004

η−1(Z ) =

{

cos(|Z |1/2) if Z < 0cosh(Z 1/2) if Z ≥ 0

η0(Z ) =

sin(|Z |1/2)/|Z |1/2 if Z < 01 if Z = 0sinh(Z 1/2)/Z 1/2 if Z > 0

Z := (µ h)2 = −(ω h)2

ηn(Z ) :=1Z

[ηn−2(Z ) − (2n − 1)ηn−1(Z )], n = 1, 2, 3, . . .

η′n(Z ) =12ηn+1(Z ), n = 1, 2, 3, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Exponential FittingL. Ixaru and G. Vanden BergheExponential fittingKluwer Academic Publishers, Dordrecht, 2004

η−1(Z ) =

{

cos(|Z |1/2) if Z < 0cosh(Z 1/2) if Z ≥ 0

η0(Z ) =

sin(|Z |1/2)/|Z |1/2 if Z < 01 if Z = 0sinh(Z 1/2)/Z 1/2 if Z > 0

Z := (µ h)2 = −(ω h)2

ηn(Z ) :=1Z

[ηn−2(Z ) − (2n − 1)ηn−1(Z )], n = 1, 2, 3, . . .

η′n(Z ) =12ηn+1(Z ), n = 1, 2, 3, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Exponential FittingL. Ixaru and G. Vanden BergheExponential fittingKluwer Academic Publishers, Dordrecht, 2004

η−1(Z ) =

{

cos(|Z |1/2) if Z < 0cosh(Z 1/2) if Z ≥ 0

η0(Z ) =

sin(|Z |1/2)/|Z |1/2 if Z < 01 if Z = 0sinh(Z 1/2)/Z 1/2 if Z > 0

Z := (µ h)2 = −(ω h)2

ηn(Z ) :=1Z

[ηn−2(Z ) − (2n − 1)ηn−1(Z )], n = 1, 2, 3, . . .

η′n(Z ) =12ηn+1(Z ), n = 1, 2, 3, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Choice of ω

• local optimizationbased on local truncation error (lte)ω is step-dependent

• global optimizationPreservation of geometric properties (periodicity, energy,. . . )ω is constant over the interval of integration

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Choice of ω

• local optimizationbased on local truncation error (lte)ω is step-dependent

• global optimizationPreservation of geometric properties (periodicity, energy,. . . )ω is constant over the interval of integration

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Fourth-order boundary value problem

y (4) = F (t , y) a ≤ t ≤ b

y(a) = A1 y ′′(a) = A2

y(b) = B1 y ′′(b) = B2

• special case : y (4) + f (t) y = g(t)

• mathematical modeling of viscoelastic and inelastic flows,deformation of beams, plate deflection theory, . . .

• work by Doedel, Usmani, Agarwal, Cherruault et al., VanDaele et al., . . .

• finite differences, B-splines, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Fourth-order boundary value problem

y (4) = F (t , y) a ≤ t ≤ b

y(a) = A1 y ′′(a) = A2

y(b) = B1 y ′′(b) = B2

• special case : y (4) + f (t) y = g(t)

• mathematical modeling of viscoelastic and inelastic flows,deformation of beams, plate deflection theory, . . .

• work by Doedel, Usmani, Agarwal, Cherruault et al., VanDaele et al., . . .

• finite differences, B-splines, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Fourth-order boundary value problem

y (4) = F (t , y) a ≤ t ≤ b

y(a) = A1 y ′′(a) = A2

y(b) = B1 y ′′(b) = B2

• special case : y (4) + f (t) y = g(t)

• mathematical modeling of viscoelastic and inelastic flows,deformation of beams, plate deflection theory, . . .

• work by Doedel, Usmani, Agarwal, Cherruault et al., VanDaele et al., . . .

• finite differences, B-splines, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Fourth-order boundary value problem

y (4) = F (t , y) a ≤ t ≤ b

y(a) = A1 y ′′(a) = A2

y(b) = B1 y ′′(b) = B2

• special case : y (4) + f (t) y = g(t)

• mathematical modeling of viscoelastic and inelastic flows,deformation of beams, plate deflection theory, . . .

• work by Doedel, Usmani, Agarwal, Cherruault et al., VanDaele et al., . . .

• finite differences, B-splines, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Fourth-order boundary value problem

y (4) = F (t , y) a ≤ t ≤ b

y(a) = A1 y ′′(a) = A2

y(b) = B1 y ′′(b) = B2

• special case : y (4) + f (t) y = g(t)

• mathematical modeling of viscoelastic and inelastic flows,deformation of beams, plate deflection theory, . . .

• work by Doedel, Usmani, Agarwal, Cherruault et al., VanDaele et al., . . .

• finite differences, B-splines, . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

The formulae

tj = a + j h, j = 0, 1, . . . N + 1 N ≥ 3 h :=b − aN + 1

• central formula for j = 2, . . . , N − 1

yj−2 + a1 yj−1 + a0 yj + a1 yj+1 + yj+2 =

h4 (

b2 Fj−2 + b1 Fj−1 + b0 Fj + b1 Fj+1 + b2 Fj+2)

whereby yj is approximate value of y(tj) and Fj := F (tj , yj).

• begin formula

y0 + α1 y1 + α2 y2 + a3 y3 =

γ h2 y ′′0 + h4 (β0 F0 + β1 F1 + β2 F2 + β3 F3 + β4 F4 + β5 F5)

• end formula

Introduction Fourth-order boundary value problems Numerical examples Conclusions

The formulae

tj = a + j h, j = 0, 1, . . . N + 1 N ≥ 3 h :=b − aN + 1

• central formula for j = 2, . . . , N − 1

yj−2 + a1 yj−1 + a0 yj + a1 yj+1 + yj+2 =

h4 (

b2 Fj−2 + b1 Fj−1 + b0 Fj + b1 Fj+1 + b2 Fj+2)

whereby yj is approximate value of y(tj) and Fj := F (tj , yj).

• begin formula

y0 + α1 y1 + α2 y2 + a3 y3 =

γ h2 y ′′0 + h4 (β0 F0 + β1 F1 + β2 F2 + β3 F3 + β4 F4 + β5 F5)

• end formula

Introduction Fourth-order boundary value problems Numerical examples Conclusions

The formulae

tj = a + j h, j = 0, 1, . . . N + 1 N ≥ 3 h :=b − aN + 1

• central formula for j = 2, . . . , N − 1

yj−2 + a1 yj−1 + a0 yj + a1 yj+1 + yj+2 =

h4 (

b2 Fj−2 + b1 Fj−1 + b0 Fj + b1 Fj+1 + b2 Fj+2)

whereby yj is approximate value of y(tj) and Fj := F (tj , yj).

• begin formula

y0 + α1 y1 + α2 y2 + a3 y3 =

γ h2 y ′′0 + h4 (β0 F0 + β1 F1 + β2 F2 + β3 F3 + β4 F4 + β5 F5)

• end formula

Introduction Fourth-order boundary value problems Numerical examples Conclusions

The formulae

tj = a + j h, j = 0, 1, . . . N + 1 N ≥ 3 h :=b − aN + 1

• central formula for j = 2, . . . , N − 1

yj−2 + a1 yj−1 + a0 yj + a1 yj+1 + yj+2 =

h4 (

b2 Fj−2 + b1 Fj−1 + b0 Fj + b1 Fj+1 + b2 Fj+2)

whereby yj is approximate value of y(tj) and Fj := F (tj , yj).

• begin formula

y0 + α1 y1 + α2 y2 + a3 y3 =

γ h2 y ′′0 + h4 (β0 F0 + β1 F1 + β2 F2 + β3 F3 + β4 F4 + β5 F5)

• end formula

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = −1 : L[y ] = 0 for y ∈ S ={

1, t , t2, . . . , tM−1}

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = −1 : L[y ] = 0 for y ∈ S ={

1, t , t2, . . . , tM−1}

M = 10 :

yp−2 − 4 yp−1 + 6 yp − 4 yp+1 + yp+2 =

h4

720

(

−y (4)p−2 + 124 y (4)

p−1 + 474 y (4)p + 124 y (4)

p+1 − y (4)p+2

)

L[y ](t) =1

3024h10 y (10)(t) + O(h12)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = −1 : L[y ] = 0 for y ∈ S ={

1, t , t2, . . . , tM−1}

M = 8 and b2 = 0 :

yp−2 −4 yp−1 +6 yp −4 yp+1 +yp+2 =h4

6

(

y (4)p−1 + 4 y (4)

p + y (4)p+1

)

L[y ](t) = −1

720h8 y (8)(t) + O(h10)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = −1 : L[y ] = 0 for y ∈ S ={

1, t , t2, . . . , tM−1}

M = 6 and b1 = b2 = 0 :

yp−2 − 4 yp−1 + 6 yp − 4 yp+1 + yp+2 = h4 y (4)p

L[y ](t) =16

h6 y (6)(t) + O(h8)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 0 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), 1, t , t2, . . . , tM−3}

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 0 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), 1, t , t2, . . . , tM−3}

M = 10 :

yp−2 − 4 yp−1 + 6 yp − 4 yp+1 + yp+2 =

h4(

b2 y (4)p−2 + b1 y (4)

p−1 + b0 y (4)p + b1 y (4)

p+1 + b2 y (4)p+2

)

b0 =4 cos2 θ − 2 − 11 cos θ

6 (cos θ − 1)2+

6

θ4b1 =

cos2 θ + 5

6 (cos θ − 1)2−

4

θ4b2 = −

cos θ + 2

12 (cos θ − 1)2+

1

θ4

L[y ](t) =1

3024h10

(

y (10)(t) + ω2 y (8)(t))

+ O(h12)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 0 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), 1, t , t2, . . . , tM−3}

M = 8 and b2 = 0 :

yp−2−4 yp−1+6 yp−4 yp+1+yp+2 = h4(

b1 y (4)p−1 + b0 y (4)

p + b1 y (4)p+1

)

b0 =cos θ

cos θ − 1+

4 (1 − cos θ)

θ4b1 =

1

2 (1 − cos θ)+

2 (cos θ − 1)

θ4

L[y ](t) = −1

720h8

(

y (8)(t) + ω2 y (6)(t))

+ O(h10)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 0 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), 1, t , t2, . . . , tM−3}

M = 6 and b1 = b2 = 0 :

yp−2 − 4 yp−1 + 6 yp − 4 yp+1 + yp+2 =sin4(θ/2)

(θ/2)4 h4 y (4)p

L[y ](t) =16

h6 (y (6)(t) + ω2 y (4)(t)) + O(h8)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 1 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), t cos(ω t), t sin(ω t), 1, t , t2, . . . , tM−5}

Introduction Fourth-order boundary value problems Numerical examples Conclusions

EF Central formula

L[y ] := y(t − 2 h) + a1 y(t − h) + a0 y(t) + a1 y(t + h) + y(t + 2 h)

−h4(

b2 y (4)(t − 2 h) + b1 y (4)(t − h) + b0 y (4)(t) + b1 y (4)(t + h) + b2 y (4)(t + 2 h))

P = 1 : L[y ] = 0 for y ∈ S ={

cos(ω t), sin(ω t), t cos(ω t), t sin(ω t), 1, t , t2, . . . , tM−5}

M = 6 and b1 = b2 = 0 :

yp−2 + a1 yp−1 + a0 yp + a1 yp+1 + yp+2 = b0 h4 y (4)p

a0 = 2−8 sin2 θ + θ (4 cos θ − 1) sin θ − 4 cos θ + 4

θ sin θ + 4 cos θ − 4a1 = −4

sin θ (θ cos θ − 2 sin θ)

θ sin θ + 4 cos θ − 4

b0 = 4sin θ

(

sin2 θ − 2 + 2 cos θ)

θ3 (θ sin θ + 4 cos θ − 4)

L[y ](t) =16

h6 (y (6)(t) + 2 ω2 y (4)(t) + ω4 y (2)(t)) + O(h8)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Coefficients of Central formula M = 6

0 2.0375 4.075−4

6

16

θ

a 0

P=−1P=0P=1P=2

0 2.0375 4.075−14

−4

6

θ

a 1

P=−1P=0P=1P=2

0 2.0375 4.0750

1

2

θ

b 0

P=−1P=0P=1P=2

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Coefficients of Central formula M = 8

0 1 25.8

6

6.2

θ

a 0

P=−1P=0P=1P=2P=3

0 1 2−4.2

−4

−3.8

θ

a 1

P=−1P=0P=1P=2P=3

0 1 20.647

0.667

0.687

θ

b 0

P=−1P=0P=1P=2P=3

0 1 20.147

0.167

0.187

b 1

P=−1P=0P=1P=2P=3

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Coefficients of Central formula M = 10

0 1 25.8

6

6.2

θ

a 0

P=−1P=0P=1P=2P=3P=4

0 1 2−4.2

−4

−3.8

θ

a 1

P=−1P=0P=1P=2P=3P=4

0 1 20.639

0.659

0.679

θ

b 0

0 1 20.153

0.173

0.193

b 1

0 1 2−0.021

−0.001

0.019

b 2

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula : coefficientsE.g. b0 in case M = 6In closed form . . .

• P = −1 :b0 = 1

• P = 0 :

b0 = 4(cos θ − 1)2

θ4

• P = 1 :

b0 = −4sin θ (cos θ − 1)2

θ3 (4 cos θ − 4 + θ sin θ)

• P = 2 :

b0 = −2sin3 θ

θ2 (θ cos θ − 3 sin θ)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula : coefficientsE.g. b0 in case M = 6As a series . . .

• P = −1 :b0 = 1

• P = 0 :

b0 = 1 −16θ2 +

180

θ4 + O(θ6)

• P = 1 :

b0 = 1 −13θ2 +

37720

θ4 + O(θ6)

• P = 2 :

b0 = 1 −12θ2 +

760

θ4 + O(θ6)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula : local truncation error

lte = L[y ](t)

As an inifinite series :

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2)

In closed form : (Coleman and Ixaru)

lte = hM ΦK ,P(Z ) DK+1 (D2 + ω2)P+1y(ξ)

Z ∈ some interval ΦK ,P(0) 6= 0 ξ ∈ (t − 2 h, t + 2 h)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula : local truncation error

lte = L[y ](t)

As an inifinite series :

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2)

In closed form : (Coleman and Ixaru)

lte = hM ΦK ,P(Z ) DK+1 (D2 + ω2)P+1y(ξ)

Z ∈ some interval ΦK ,P(0) 6= 0 ξ ∈ (t − 2 h, t + 2 h)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Central formula : local truncation error

lte = L[y ](t)

As an inifinite series :

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2)

In closed form : (Coleman and Ixaru)

lte = hM ΦK ,P(Z ) DK+1 (D2 + ω2)P+1y(ξ)

Z ∈ some interval ΦK ,P(0) 6= 0 ξ ∈ (t − 2 h, t + 2 h)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

• P = 0 :y (K+3)(tj) + y (K+1)(tj)ω2

j = 0

• P = 1 :

y (K+5)(tj) + 2 y (K+3)(tj)ω2j + y (K+1)(tj)ω4

j = 0

• P = 2 :

y (K+7)(tj)+3 y (K+5)(tj)ω4j +3 y (K+3)(tj)ω4

j +y (K+1)(tj)ω6j = 0

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

• P = 0 :y (K+3)(tj) + y (K+1)(tj)ω2

j = 0

• P = 1 :

y (K+5)(tj) + 2 y (K+3)(tj)ω2j + y (K+1)(tj)ω4

j = 0

• P = 2 :

y (K+7)(tj)+3 y (K+5)(tj)ω4j +3 y (K+3)(tj)ω4

j +y (K+1)(tj)ω6j = 0

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

• P = 0 :y (K+3)(tj) + y (K+1)(tj)ω2

j = 0

• P = 1 :

y (K+5)(tj) + 2 y (K+3)(tj)ω2j + y (K+1)(tj)ω4

j = 0

• P = 2 :

y (K+7)(tj)+3 y (K+5)(tj)ω4j +3 y (K+3)(tj)ω4

j +y (K+1)(tj)ω6j = 0

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

• P = 0 :y (K+3)(tj) + y (K+1)(tj)ω2

j = 0

• P = 1 :

y (K+5)(tj) + 2 y (K+3)(tj)ω2j + y (K+1)(tj)ω4

j = 0

• P = 2 :

y (K+7)(tj)+3 y (K+5)(tj)ω4j +3 y (K+3)(tj)ω4

j +y (K+1)(tj)ω6j = 0

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

• P = 0 :y (K+3)(tj) + y (K+1)(tj)ω2

j = 0

• P = 1 :

y (K+5)(tj) + 2 y (K+3)(tj)ω2j + y (K+1)(tj)ω4

j = 0

• P = 2 :

y (K+7)(tj)+3 y (K+5)(tj)ω4j +3 y (K+3)(tj)ω4

j +y (K+1)(tj)ω6j = 0

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

ω2j is solution of equation of degree P + 1.

• Which value of P should be chosen ?

• Which root ωj should be chosen ?

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

ω2j is solution of equation of degree P + 1.

• Which value of P should be chosen ?

• Which root ωj should be chosen ?

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Local truncation error

lte = hM CM DK+1 (D2 + ω2)P+1y(t) + O(hM+2) ,

At tj : D(K+1) (D2 + ω2j )(P+1)y(t)

t=tj= 0 j = 2, . . . , N − 1

ω2j is solution of equation of degree P + 1.

• Which value of P should be chosen ?

• Which root ωj should be chosen ?

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

lte = hM CM DK+1 (D2 − µ2)P+1y(t) + O(hM−2)

Suppose y(t) takes the form tP0 eµ0 t

Then lte= 0 for any EF rule with P ≥ P0 and µj = µ0

TheoremIf y(t) = tP0 eµ0 t then ν = µ2

0 is a root of multiplicity P − P0 + 1of DK+1 (D2 − ν)P+1y(t) = 0.

• if P = P0, then µ = µ0 will be a single root

• if P = P0 + 1, then µ = µ0 will be a double root

• if P = P0 + 2, then µ = µ0 will be a triple root

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

lte = hM CM DK+1 (D2 − µ2)P+1y(t) + O(hM−2)

Suppose y(t) takes the form tP0 eµ0 t

Then lte= 0 for any EF rule with P ≥ P0 and µj = µ0

TheoremIf y(t) = tP0 eµ0 t then ν = µ2

0 is a root of multiplicity P − P0 + 1of DK+1 (D2 − ν)P+1y(t) = 0.

• if P = P0, then µ = µ0 will be a single root

• if P = P0 + 1, then µ = µ0 will be a double root

• if P = P0 + 2, then µ = µ0 will be a triple root

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

lte = hM CM DK+1 (D2 − µ2)P+1y(t) + O(hM−2)

Suppose y(t) takes the form tP0 eµ0 t

Then lte= 0 for any EF rule with P ≥ P0 and µj = µ0

TheoremIf y(t) = tP0 eµ0 t then ν = µ2

0 is a root of multiplicity P − P0 + 1of DK+1 (D2 − ν)P+1y(t) = 0.

• if P = P0, then µ = µ0 will be a single root

• if P = P0 + 1, then µ = µ0 will be a double root

• if P = P0 + 2, then µ = µ0 will be a triple root

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

lte = hM CM DK+1 (D2 − µ2)P+1y(t) + O(hM−2)

Suppose y(t) takes the form tP0 eµ0 t

Then lte= 0 for any EF rule with P ≥ P0 and µj = µ0

TheoremIf y(t) = tP0 eµ0 t then ν = µ2

0 is a root of multiplicity P − P0 + 1of DK+1 (D2 − ν)P+1y(t) = 0.

• if P = P0, then µ = µ0 will be a single root

• if P = P0 + 1, then µ = µ0 will be a double root

• if P = P0 + 2, then µ = µ0 will be a triple root

• . . .

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

Suppose y(t) does not take the form tP0 eµ0 t

Then y(t) 6∈ S for any P.

For a given value of P :

D(K+1) (D2 − µ2j )

(P+1)y(t)∣

t=tj= 0

At each point tj , this gives P + 1 values for µ2j .

Idea : keep |µj h| as small as possible.If possible, choose P ≥ 1 to avoid too large values for |µj |.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

Suppose y(t) does not take the form tP0 eµ0 t

Then y(t) 6∈ S for any P.

For a given value of P :

D(K+1) (D2 − µ2j )

(P+1)y(t)∣

t=tj= 0

At each point tj , this gives P + 1 values for µ2j .

Idea : keep |µj h| as small as possible.If possible, choose P ≥ 1 to avoid too large values for |µj |.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

Suppose y(t) does not take the form tP0 eµ0 t

Then y(t) 6∈ S for any P.

For a given value of P :

D(K+1) (D2 − µ2j )

(P+1)y(t)∣

t=tj= 0

At each point tj , this gives P + 1 values for µ2j .

Idea : keep |µj h| as small as possible.If possible, choose P ≥ 1 to avoid too large values for |µj |.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

Suppose y(t) does not take the form tP0 eµ0 t

Then y(t) 6∈ S for any P.

For a given value of P :

D(K+1) (D2 − µ2j )

(P+1)y(t)∣

t=tj= 0

At each point tj , this gives P + 1 values for µ2j .

Idea : keep |µj h| as small as possible.If possible, choose P ≥ 1 to avoid too large values for |µj |.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Parameter selection

Suppose y(t) does not take the form tP0 eµ0 t

Then y(t) 6∈ S for any P.

For a given value of P :

D(K+1) (D2 − µ2j )

(P+1)y(t)∣

t=tj= 0

At each point tj , this gives P + 1 values for µ2j .

Idea : keep |µj h| as small as possible.If possible, choose P ≥ 1 to avoid too large values for |µj |.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

First example

y (4) −384 t4

(2 + t2)4 y = 242 − 11 t2

(2 + t2)4

y(−1) =13

y(1) =13

y ′′(−1) =2

27y ′′(1) =

227

Solution : y(t) =1

2 + t2

Introduction Fourth-order boundary value problems Numerical examples Conclusions

First example

y (4) −384 t4

(2 + t2)4 y = 242 − 11 t2

(2 + t2)4

y(−1) =13

y(1) =13

y ′′(−1) =2

27y ′′(1) =

227

Solution : y(t) =1

2 + t2

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 0 : y (8)(tj) − y (6)(tj)µ2j = 0

• re-express higher orderderivatives in terms of y ,y ′, y ′′ and y ′′′

• approximate y ′, y ′′ andy ′′′ in terms of y

• an initial approximationfor y can be computedwith a polynomial rule

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 0 : y (8)(tj) − y (6)(tj)µ2j = 0

• re-express higher orderderivatives in terms of y ,y ′, y ′′ and y ′′′

• approximate y ′, y ′′ andy ′′′ in terms of y

• an initial approximationfor y can be computedwith a polynomial rule

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 0 : y (8)(tj) − y (6)(tj)µ2j = 0

• re-express higher orderderivatives in terms of y ,y ′, y ′′ and y ′′′

• approximate y ′, y ′′ andy ′′′ in terms of y

• an initial approximationfor y can be computedwith a polynomial rule

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 0 : y (8)(tj) − y (6)(tj)µ2j = 0

• re-express higher orderderivatives in terms of y ,y ′, y ′′ and y ′′′

• approximate y ′, y ′′ andy ′′′ in terms of y

• an initial approximationfor y can be computedwith a polynomial rule

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 0 : y (8)(tj) − y (6)(tj)µ2j = 0

• re-express higher orderderivatives in terms of y ,y ′, y ′′ and y ′′′

• approximate y ′, y ′′ andy ′′′ in terms of y

• an initial approximationfor y can be computedwith a polynomial rule

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

7

8

9

Real and imaginary partof µj

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 1 : y (8)(tj) − 2 y (6)(tj)µ2j + y (4)(tj)µ4

j = 0

−1 −0,5 0 0,5 1−5

0

5

10

−1 −0,5 0 0,5 1−5

0

5

10

Real and imag. part of µ1,j and µ2,j

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 1 : y (8)(tj) − 2 y (6)(tj)µ2j + y (4)(tj)µ4

j = 0

−1 −0,5 0 0,5 1−5

0

5

10

−1 −0,5 0 0,5 1−5

0

5

10

Real and imag. part of µ1,j and µ2,j

−1 −0,5 0 0,5 1

−4

−2

0

2

4

6

8

10

12

Real and imaginarypart of µj with smallestnorm

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 8

P = 1 : y (8)(tj) − 2 y (6)(tj)µ2j + y (4)(tj)µ4

j = 0

10−3

10−2

10−1

10−10

10−9

10−8

10−7

10−6

h

E

error obtained with µ1,j , µ2,j and µ with smallest norm

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Global error

M = 6 :(K , P) = (5,−1) : second-order method(K , P) = (1, 1) : fourth-order method

10−3

10−2

10−1

10−10

10−8

10−6

10−4

10−2

h

E

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Global error

M = 8 :(K , P) = (7,−1) : fourth-order method(K , P) = (3, 1) : sixth-order method

10−3

10−2

10−1

10−12

10−10

10−8

10−6

10−4

h

E

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Global error

M = 10 :(K , P) = (9,−1) : sixth-order method(K , P) = (5, 1) : eighth-order method

10−3

10−2

10−1

10−12

10−10

10−8

10−6

h

E

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Condition number

10−3

10−2

10−1

104

106

108

1010

1012

h

cond

(A)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Second example

y (4) − t = 4 et

y(−1) = −1/e y(1) = e

y ′′(−1) = 1/e y ′′(1) = 3 e

Solution : y(t) = et t

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Second example

y (4) − t = 4 et

y(−1) = −1/e y(1) = e

y ′′(−1) = 1/e y ′′(1) = 3 e

Solution : y(t) = et t

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by fourth-order finite difference scheme

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by fourth-order finite difference scheme

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by fourth-order finite difference scheme

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by fourth-order finite difference scheme

−1 −0.5 0 0.5 10

0.5

1

1.5

2

t

µ j

two real roots µ(1) and µ(2)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

µj for M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by fourth-order finite difference scheme

−1 −0.5 0 0.5 10

0.5

1

1.5

2

t

µ j

two real roots µ(1) and µ(2)10

−310

−210

−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

h

E

Introduction Fourth-order boundary value problems Numerical examples Conclusions

M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by sixth-order finite difference scheme

−1 −0.5 0 0.5 10

0.5

1

1.5

2

t

µ j

two real roots µ(1) and µ(2)

Introduction Fourth-order boundary value problems Numerical examples Conclusions

M = 6

P = 1 : y (6)(tj) − 2 y (4)(tj)µ2j + y (2)(tj)µ4

j = 0

differentiating the differential equation :

(y (2)(tj) + 4 etj ) − 2 (yj + 4 etj )µ2j + y (2)(tj)µ4

j = 0

y (2)(tj) approximated by sixth-order finite difference scheme

−1 −0.5 0 0.5 10

0.5

1

1.5

2

t

µ j

two real roots µ(1) and µ(2)10

−310

−210

−110

−14

10−12

10−10

10−8

10−6

10−4

10−2

h

E

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Conclusions

• Fourth-order boundary value problems are solved bymeans of parameterized exponentially-fitted methods.

• A suitable value for the parameter can be found from theroots of the leading term of the local truncation error.

• If a constant value is found, then a very accurate solutioncan be obtained.

• However, the methods strongly suffer from the fact that thesystem to be solved is ill-conditioned for small values of themesh size.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Conclusions

• Fourth-order boundary value problems are solved bymeans of parameterized exponentially-fitted methods.

• A suitable value for the parameter can be found from theroots of the leading term of the local truncation error.

• If a constant value is found, then a very accurate solutioncan be obtained.

• However, the methods strongly suffer from the fact that thesystem to be solved is ill-conditioned for small values of themesh size.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Conclusions

• Fourth-order boundary value problems are solved bymeans of parameterized exponentially-fitted methods.

• A suitable value for the parameter can be found from theroots of the leading term of the local truncation error.

• If a constant value is found, then a very accurate solutioncan be obtained.

• However, the methods strongly suffer from the fact that thesystem to be solved is ill-conditioned for small values of themesh size.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Conclusions

• Fourth-order boundary value problems are solved bymeans of parameterized exponentially-fitted methods.

• A suitable value for the parameter can be found from theroots of the leading term of the local truncation error.

• If a constant value is found, then a very accurate solutioncan be obtained.

• However, the methods strongly suffer from the fact that thesystem to be solved is ill-conditioned for small values of themesh size.

Introduction Fourth-order boundary value problems Numerical examples Conclusions

Conclusions

• Fourth-order boundary value problems are solved bymeans of parameterized exponentially-fitted methods.

• A suitable value for the parameter can be found from theroots of the leading term of the local truncation error.

• If a constant value is found, then a very accurate solutioncan be obtained.

• However, the methods strongly suffer from the fact that thesystem to be solved is ill-conditioned for small values of themesh size.

top related