evaluation of the combined s of reclaimed asphalt … of reclaimed asphalt pavement (rap), reclaimed...

Post on 23-Apr-2018

221 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

EvaluationoftheCombinedEffectsofReclaimedAsphaltPavement(RAP),ReclaimedAsphaltShingles(RAS),andDifferentVirginBinderSourcesonthePerformanceofBlendedBindersforMixeswithHigherPercentagesofRAPandRAS

November2015

AResearchReportfromtheNationalCenterforSustainableTransportation

ZiaAlavi,YuanHe,JohnHarvey,andDavidJones-DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis

ReportNumber:UCPRC-RR-2015-06

i

AbouttheNationalCenterforSustainableTransportationTheNationalCenterforSustainableTransportationisaconsortiumofleadinguniversitiescommittedtoadvancinganenvironmentallysustainabletransportationsystemthroughcutting-edgeresearch,directpolicyengagement,andeducationofourfutureleaders.Consortiummembersinclude:UniversityofCalifornia,Davis;UniversityofCalifornia,Riverside;UniversityofSouthernCalifornia;CaliforniaStateUniversity,LongBeach;GeorgiaInstituteofTechnology;andUniversityofVermont.Moreinformationcanbefoundat:ncst.ucdavis.edu.DisclaimerThecontentsofthisreportreflecttheviewsoftheauthors,whoareresponsibleforthefactsandtheaccuracyoftheinformationpresentedherein.ThisdocumentisdisseminatedunderthesponsorshipoftheUnitedStatesDepartmentofTransportation’sUniversityTransportationCentersprogram,intheinterestofinformationexchange.TheU.S.GovernmentandtheStateofCaliforniaassumesnoliabilityforthecontentsorusethereof.NordoesthecontentnecessarilyreflecttheofficialviewsorpoliciesoftheU.S.GovernmentandtheStateofCalifornia.Thisreportdoesnotconstituteastandard,specification,orregulation.ThisreportdoesnotconstituteanendorsementbytheCaliforniaDepartmentofTransportation(Caltrans)ofanyproductdescribedherein.Forindividualswithsensorydisabilities,thisdocumentisavailableinalternateformats.Forinformation,call(916)654-8899,TTY711,orwritetoCaltrans,DivisionofResearch,InnovationandSystemInformation,MS-83,P.O.Box942873,Sacramento,CA94273-0001.AcknowledgmentsThisstudywasfundedbyagrantfromtheNationalCenterforSustainableTransportation(NCST),supportedbyUSDOTandCaltransthroughtheUniversityTransportationCentersprogram.TheauthorswouldliketothanktheNCST,USDOT,andCaltransfortheirsupportofuniversity-basedresearchintransportation,andespeciallyforthefundingprovidedinsupportofthisproject.

ii

EvaluationoftheCombinedEffectsofReclaimedAsphaltPavement(RAP),

ReclaimedAsphaltShingles(RAS),andDifferentVirginBinderSourcesonthe

PerformanceofBlendedBindersforMixesWithHigherPercentagesofRAPandRAS

ANationalCenterforSustainableTransportationResearchReport

November2015

ZiaAlavi,DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis

YuanHe,DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis

JohnHarvey,DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis

DavidJones,DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis

iii

[pageleftintentionallyblank]

iv

TableofContentsExecutiveSummary.................................................................................................................11.Introduction.......................................................................................................................3

1.1 Background..................................................................................................................31.2 ProblemStatements....................................................................................................41.3 ProjectObjectives........................................................................................................41.4 ReportLayout...............................................................................................................51.5 MeasurementUnits.....................................................................................................5

2. LiteratureReview..............................................................................................................62.1 AsphaltBinder..............................................................................................................62.2 AsphaltBinderExtraction.............................................................................................62.3 ReclaimedAsphalt........................................................................................................72.4 TestingBlendedVirgin/ReclaimedAsphaltBinders.....................................................72.5 LiteratureReviewSummary.........................................................................................9

3. ExperimentDesign..........................................................................................................113.1 ExperimentPlan.........................................................................................................113.2 AsphaltBinderTesting...............................................................................................123.3 FineAggregateMatrixTesting...................................................................................14

4. TestResults.....................................................................................................................204.1 AsphaltBinderTesting...............................................................................................204.2 FineAggregateMatrixMixTesting............................................................................26

5. ConclusionsandInterimRecommendations....................................................................37References.............................................................................................................................39

v

ListofTablesTable3.1:GeneralMaterialProperties.......................................................................................11Table4.1:High,Intermediate,andLowCriticalTemperaturesofRAPBinders..........................20Table4.2:MasterCurveParametersforVirginandBlendedBinders.........................................21Table4.3:MasterCurveParametersforFAMMixes...................................................................29Table4.4:ANOVAResults............................................................................................................35ListofFiguresFigure2.1:Asphaltbindercolloidalstructure...............................................................................6Figure3.1:Exampleofmeasuredshearmodulusofablendedbinderat20°C...........................14Figure3.2:Exampleofadevelopedmastercurveforablendedasphaltbinderat20°C...........14Figure3.3:FAMspecimenscoredfromaSuperpavegyratory-compactedspecimen................16Figure3.4:Weighstationforair-voidmeasurement(a)andFAMspecimenstorage(b)...........16Figure3.5:DSR-DMAtorsionbarfixtureusedforFAMtesting...................................................17Figure3.6:ExampleFAMspecimenamplitudesweeptestresults.............................................18Figure3.7:ExampleofmeasuredshearmodulusofaFAMspecimenat20°C...........................18Figure3.8:ExampleofshearmodulusmastercurveofaFAMspecimenat20°C......................19Figure4.1:RecoveredRASbinderafterthreehoursofconditioningat190ºC...........................21Figure4.2:Shearmoduliofvirginasphaltbinders(20°C)...........................................................22Figure4.3:Shearmoduliofbinderswith25percentRAPbinderreplacement(20°C)...............23Figure4.4:Shearmoduliofbinderswith40percentRAPbinderreplacement(20°C)...............23Figure4.5:Comparisonofnormalizedshearmodulimastercurvesforblendedbinders..........24Figure4.6:GradationofFAM,RAP,andRASmaterials...............................................................26Figure4.7:FAMspecimenair-voidcontentsforPG64mixes.....................................................27Figure4.8:FAMspecimenair-voidcontentsforPG58mixes.....................................................27Figure4.9:FAMspecimenLVErangeformixeswithPG64virginbinders.................................28Figure4.10:FAMspecimenLVErangeformixeswithPG58virginbinders...............................28Figure4.11:MastercurvesofcontrolFAMmixes.......................................................................31Figure4.12:MastercurvesofFAMmixeswith25percentRAPbinderreplacement.................31Figure4.13:MastercurvesofFAMmixeswith40percentRAPbinderreplacement.................31Figure4.14:MastercurvesofFAMmixeswith15percentRASbinderreplacement.................31Figure4.15:PG64-16-A:ShearandnormalizedmodulusmastercurvesofFAMmixes............32Figure4.16:PG58-22-A:ShearandnormalizedmodulusmastercurvesofFAMmixes............32Figure4.17:PG64-16-B:ShearandnormalizedmodulusmastercurvesofFAMmixes............33Figure4.18:PG58-22-B:ShearandnormalizedmodulusmastercurvesofFAMmixes............33Figure4.19:PG64-16-C:ShearandnormalizedmodulusmastercurvesofFAMmixes............34Figure4.20:ComparisonofasphaltbinderandFAMmixshearmodulus(0.1Hzat20°C).........36Figure4.21:ComparisonofasphaltbinderandFAMmixshearmodulus(1.0Hzat20°C).........36Figure4.22:ComparisonofasphaltbinderandFAMmixshearmodulus(10Hzat20°C)..........36

vi

ListofAbbreviationsAASHTO AmericanAssociationofStateHighwayandTransportationOfficialsAB AssemblybillANOVA AnalysisofvarianceBBR BendingbeamrheometerCaltrans CaliforniaDepartmentofTransportationDMA DynamicmechanicalanalyzerDSR DynamicshearrheometerFAM FineaggregatemixFHWA FederalHighwayAdministrationG* DynamicshearmodulusGmB BulkspecificgravityofthemixGmm TheoreticalmaximumspecificgravityofthemixHMA HotmixasphaltLVE LinearviscoelasticNCHRP NationalCooperativeHighwayResearchProgramn-PB NormalpropylbromideNCST NationalCenterforSustainableTransportPAV PressureagingvesselPG PerformanceGradingPPRC PartneredPavementResearchCenterRA RejuvenatingagentRAP ReclaimedorRecycledAsphaltPavementRAS ReclaimedorRecycledAsphaltShinglesRTFO Rollingthin-filmovenSARA Saturates,aromatics,resins,andasphaltenesSHRP StrategicHighwayResearchProgramSPE StrategicPlanElementSUPERPAVE SuperiorPerformingAsphaltPavementTCE TrichloroethyleneUCPRC UniversityofCaliforniaPavementResearchCenterWMA Warmmixasphaltδ Phaseangle

vii

TestMethodsCitedintheTextAASHTOM320 StandardSpecificationforPerformance-GradedAsphaltBinderAASHTOR30 StandardPracticeforMixtureConditioningofHotMixAsphalt(HMA)AASHTOR35 StandardPracticeforSuperpaveVolumetricDesignforAsphaltMixturesAASHTOT30 StandardMethodofTestforMechanicalAnalysisofExtractedAggregateAASHTOT164 StandardMethodofTestforQuantitativeExtractionofAsphaltBinderfrom

HotMixAsphaltAASHTOT166 StandardMethodofTestforBulkSpecificGravity(Gmb)ofCompactedHot

MixAsphalt(HMA)UsingSaturatedSurface-DrySpecimensAASHTOT209 StandardMethodofTestforTheoreticalMaximumSpecificGravity(Gmm)

andDensityofHotMixAsphaltAASHTOT240 StandardMethodofTestforEffectofHeatandAironaMovingFilmof

AsphaltBinder(RollingThin-FilmOvenTest)AASHTOT269 StandardMethodofTestforPercentAir-voidsinCompactedDenseand

OpenAsphaltMixturesAASHTOT308 StandardMethodofTestforDeterminingtheAsphaltBinderContentofHot

MixAsphalt(HMA)bytheIgnitionMethodAASHTOT312 StandardMethodofTestforPreparingandDeterminingtheDensityof

AsphaltMixSpecimensbyMeansoftheSuperpaveGyratoryCompactorAASHTOT313 StandardMethodofTestforDeterminingtheFlexuralCreepStiffnessof

AsphaltBinderUsingtheBendingBeamRheometerAASHTOT315 StandardMethodofTestforDeterminingtheRheologicalPropertiesof

AsphaltBinderUsingaDynamicShearRheometer(DSR)ASTMD1856 StandardTestMethodforRecoveryofAsphaltfromSolutionbyAbson

Method

viii

ConversionFactors

SI*(MODERNMETRIC)CONVERSIONFACTORSAPPROXIMATECONVERSIONSTOSIUNITS

Symbol WhenYouKnow MultiplyBy ToFind SymbolLENGTH

in inches 25.4 Millimeters mmft feet 0.305 Meters myd yards 0.914 Meters mmi miles 1.61 Kilometers Km

AREAin2 squareinches 645.2 Squaremillimeters mm2ft2 squarefeet 0.093 Squaremeters m2yd2 squareyard 0.836 Squaremeters m2ac acres 0.405 Hectares hami2 squaremiles 2.59 Squarekilometers km2

VOLUMEfloz fluidounces 29.57 Milliliters mLgal gallons 3.785 Liters Lft3 cubicfeet 0.028 cubicmeters m3yd3 cubicyards 0.765 cubicmeters m3

NOTE:volumesgreaterthan1000Lshallbeshowninm3MASS

oz ounces 28.35 Grams glb pounds 0.454 Kilograms kgT shorttons(2000lb) 0.907 megagrams(or"metricton") Mg(or"t")

TEMPERATURE(exactdegrees)°F Fahrenheit 5(F-32)/9 Celsius °C

or(F-32)/1.8 ILLUMINATION

fc foot-candles 10.76 Lux lxfl foot-Lamberts 3.426 candela/m2 cd/m2

FORCEandPRESSUREorSTRESSlbf poundforce 4.45 Newtons Nlbf/in2 poundforcepersquareinch 6.89 Kilopascals kPa

APPROXIMATECONVERSIONSFROMSIUNITSSymbol WhenYouKnow MultiplyBy ToFind Symbol

LENGTHmm millimeters 0.039 Inches inm meters 3.28 Feet ftm meters 1.09 Yards ydkm kilometers 0.621 Miles mi

AREAmm2 squaremillimeters 0.0016 squareinches in2m2 squaremeters 10.764 squarefeet ft2m2 squaremeters 1.195 squareyards yd2ha Hectares 2.47 Acres ackm2 squarekilometers 0.386 squaremiles mi2

VOLUMEmL Milliliters 0.034 fluidounces flozL liters 0.264 Gallons galm3 cubicmeters 35.314 cubicfeet ft3m3 cubicmeters 1.307 cubicyards yd3

MASSg grams 0.035 Ounces ozkg kilograms 2.202 Pounds lbMg(or"t") megagrams(or"metricton") 1.103 shorttons(2000lb) T

TEMPERATURE(exactdegrees)°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATIONlx lux 0.0929 foot-candles fccd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCEandPRESSUREorSTRESSN Newtons 0.225 Poundforce lbfkPa Kilopascals 0.145 poundforcepersquareinch lbf/in2

*SIisthesymbolfortheInternationalSystemofbemadetocomplywithSection4ofASTME380(RevisedMarch2003)

ix

[pageleftintentionallyblank]

1

ExecutiveSummary

ThisreportsummarizesthemainfindingsfromaprojectfundedbytheNationalCenterforSustainableTransportation(NCST)toinvestigatetheuseofhigherpercentagesofreclaimedasphaltpavement(RAP)andreclaimedasphaltshingles(RAS)asareplacementforapercentageofthevirginbinderinnewasphaltmixesinCalifornia.Theresearchfocusedontestingproceduresthatdonotfirstrequirechemicalextractionandrecoveryoftheage-hardenedasphaltbindersfromtheRAPandRAS.Fivedifferentasphaltbinderscoveringtwoperformancegrades(PG64-16andPG58-22)andsourcedfromthreeCaliforniarefinerieswereevaluatedinthisstudy.TheinfluenceoftwodifferentpercentagesofRAP(25and40percentbybinderreplacement)andonepercentageofRAS(15percentbybinderreplacement)wereevaluatedthroughpartialfactorialasphaltbindertestingandfullfactorialfineaggregatematrix(FAM)mixtesting.Theeffectofapetroleum-basedrejuvenatingagentaddedtoselectedmixes(with40percentRAPand15percentRAS)wasalsoinvestigated.Testingwaslimitedtotheintermediatetemperaturepropertiesofthemixes(i.e.,4°Cto40°C).Keyobservationsandfindingsfromthisprojectincludethefollowing:

• AsphaltbinderextractedandrecoveredfromRAScouldnotbetestedduetoitsveryhighstiffness.TheRASbinderwasnotsufficientlyworkabletomoldsamplesfortestinginadynamicshearrheometer(DSR).

• Testingproceduresweredevelopedaspartofthispreliminarytestingphasetomeasuredynamicshearmodulusatdifferenttemperaturesandfrequencies,andamethodforpreparingandtestingFAMmixspecimenswasdeveloped.Cylindricalspecimens0.5in.(12.5mm)indiametercoredfromaSuperpavegyratory-compactedFAMmixspecimenweretestedusingatorsionbarfixtureinaDSR.PreliminarytestingofFAMmixespreparedwithmaterialspassingthe#4,#8,or#16(4.75mm,2.36mm,or1.18mm)sievesindicatedthatthisapproachisrepeatableandreproducible,andproducesrepresentativeresultsforcharacterizingtheperformancerelatedpropertiesofcompositebinderatbinderreplacementratesupto40percentandpossiblyhigher.Useofmaterialspassingthe#8sieve(2.36mm)isrecommended.

• TheeffectofRAPinincreasingthestiffnessofblendedbinderswasdependentprimarilyontheasphaltbindergradeand,toalesserextent,bythesourceofasphaltbinder.

• StatisticalanalysesofthetestresultsindicatedthatRAPandRAScontent,asphaltbindergradeandsource,andrejuvenatingagentallhadasignificantinfluenceonFAMmixstiffness,asexpected.

• TheFAMmixescontainingRASshowedsimilarstiffnessestothecorrespondingcontrolmixes(i.e.,containingnoreclaimedmaterials),suggestingthattheRASbinderdidnoteffectivelyblendwiththevirginbinderatthetemperaturesandmixingdurationsusedinthisstudy.

• TheinfluenceofrejuvenatingagentonreducingtheblendedbinderandFAMmixstiffnesseswasevident.Additionaltesting(beyondthescopeofthisstudy)isrequiredtoevaluatethelong-termbehaviorofmixesproducedwithrejuvenatingagentsto

2

determinewhetherthebenefitsarelimitedtoproductionandearlylife,orwhethertheyextendthroughthedesignlifeofthelayer.

• ReasonablecorrelationswereobservedbetweenthestiffnessesofasphaltbinderandthestiffnessesofFAMmixesattestingfrequenciesrangingfrom0.1Hzto10Hz.DiscrepanciesbetweenthetwomeasuredstiffnessesmaybeanindicationthatcompleteblendingofthevirginandreclaimedasphaltbinderswasnotachievedintheFAMmix,butwasforcedduringthechemicalextractionandrecovery.Thiswarrantsfurtherinvestigation.

Basedonthefindingsfromthisstudy,FAMmixtestingisconsideredtobeapotentiallyappropriateprocedureforevaluatingthepropertiesofblendedasphaltbinderinmixescontainingrelativelyhighquantitiesofRAPandRAS.Furthertestingonawiderrangeofasphaltbindergrades,asphaltbindersources,andRAPandRASsourcesisrecommendedtoconfirmthisconclusionandtodevelopmodelsforrelatingbinderpropertiesdeterminedfromFAMmixtestingtothosedeterminedfromconventionalperformancegradetesting.Chemicalanalysesofblendedbindersmayprovideadditionalinsightsforinterpretingtestresultsandwarrantfurtherinvestigation.

3

1.Introduction

1.1 Background

Morethan90percentoftheroadandhighwaynetworkintheUnitedStatesispavedwithasphaltconcrete.Thesepavementsrequireregularmaintenanceandperiodicrehabilitationtoperformeffectivelyunderheavyrepetitivetrafficloadsandsevereenvironmentalconditions.Thismaintenanceandrehabilitationinturnrequiresacontinuoussupplyofaggregateandasphaltbinder,bothofwhicharebecomingincreasinglyscarceandmoreexpensive.Consequently,thereisgrowinginterestintheuseofreclaimedasphaltpavement(RAP)materialsintheproductionofnewasphaltmixestoreducecostsandpreservenonrenewableresources.Toencouragethischange,theFederalHighwayAdministration(FHWA)recyclingpolicystatesthatthematerialsoriginallyusedintheconstructionofpavementscanbereusedfortheirrepair,reconstruction,andmaintenance(1).Reclaimedasphaltroofingshingles(RAS)areanotherpotentiallyvaluablesourceofasphaltbinderforuseinpavementconstructionsincetheycontainbetween20and30percentasphaltbinderbyweightoftheshingle.ThemajorityofRASproducedintheUnitedStates(approximately10milliontonsperyear)isobtainedfromusedroofshingles(i.e.,tear-offshingles).About1milliontonsofRASisobtainedfromproductionrejects(2).Duringasphaltshingleproduction,thebinderisheavilyoxidizedduringanair-blowingprocess.Additionalagingoccursovertimeastheshinglesareexposedtothesunandprecipitationandsubjectedtodailyandseasonaltemperatureextremes.Consequently,thebinderishighlyagedbythetimethatitisusedinnewmixes,andalthoughbindercontentsintheshinglesarehigh,thepropertiesofthebinderareverydifferentfromthoserecoveredfromRAP,particularlyforthemoreheavilyagedtear-offshingles.RAPandRASstockpilesareusuallyhighlyvariableintermsofbindercontent,binderproperties,andbinderconditionduetothediversesourcesofthematerialsandthemethodsusedtoreclaimthem.Theyarealsooftencontaminatedwithotherconstructionwaste,whichmayfurtherinfluencethewaytheybehaveinnewasphaltmixes.TheCaliforniaDepartmentofTransportation(Caltrans)recentlyincreasedto25percenttheallowablepercentageofreclaimedasphaltpavement(RAP)thatcanbeusedinnewasphaltmixes.ACaltrans-industrytaskgroup,formedtoconsiderrecentlegislation(AB812)coveringtheuseofRAPinnewmixes,hasproposedallowinganincreaseofupto40percentvirginbinderreplacementfromacombinationofRAPandRAS.Thesechangescanreducetheamountofvirginbinderrequiredinnewmixes,androadagenciesandcontractorscanthereforepotentiallycontributetoincreasedsustainabilityofpavementsbyeffectivelyusingRAPandRASmaterialsinnewasphaltmixes.However,concernshavebeenraisedregardingtheinfluencethattheagedbinderinRAPandRASwillhaveonthenewbinderproperties.Theeffectofthesematerialsonthelong-termbehaviorandperformanceofasphaltconcretemixesneedstobefullyunderstoodtoensurethatprematurefailuresresultingfromineffectiveblendingoracceleratedagingdonotoccur.

4

1.2 ProblemStatements

Whilevirginmaterialsourcesforpavementapplicationsarebecomingincreasinglyscarce,thevolumeofpavementmaterialroutinelyreclaimedfromin-servicepavementsisincreasing.Consequently,thereisgrowinginterestinusingsignificantlyhigherquantitiesofRAPandRASinCaltransasphaltmixdesigns.However,makingthischangehasraisedconcernsregardinghowthesecompositebindersmayinfluencetheperformanceanddurabilityofasphaltmixesunderCaliforniatrafficandenvironmentalconditions.Thefollowingproblemstatementshavebeenidentifiedandrequireeitheradditionalresearchorrefinement/calibrationforCaliforniaconditions:

• TheeffectofRAPand/orRASontheperformancegradeofcompositebindersisunknownandneedstobeaddressed.BothgeneraleffectsandtheeffectsofspecificRAPandRASsourcesneedtobeinvestigated.

• Theprocessofrecoveringasphaltbindersfromasphaltmixesinvolvesrelativelyaggressivechemistrythatmayinfluencetheblendingofoldandvirginbinders.Thepotentialeffectsofthisneedtobeconsideredwhentestingtheperformancepropertiesofrecoveredbinders.

• TheperformanceofasphaltmixescontainingRAPand/orRASisdependentonthepropertiesoftheconstitutivecomponents.Thesepropertiesdependonthechemistryofthebinders(whichdependsoncrudeoilsource),changesduringtimeinserviceafterbothshort-andlong-termaging,anddiffusionoftheoldandnewbindersovertime.Consequently,thecurrentSuperpavetestingequipmentandproceduresmayneedtobeadaptedtoaccuratelycharacterizetherheologicalpropertiesofthecompositebinderwithrespecttohigh-,intermediate-,andlow-temperatureperformance.

• Theeffectsofmixproductiontimeandtemperatureonthedegreeofblendingandonthepropertiesofthecompositebinderneedtobequantified.

• Theeffectsofrejuvenatingagentsontheblendingofagedandnewbindersandthelong-termperformanceofmixesneedtobeevaluated.

1.3 ProjectObjectives

Theobjectiveofthisproject,fundedbytheNationalCenterforSustainableTransportation(NCST),wastoinvestigateusinghigherpercentagesofreclaimedasphaltpavement(RAP)andreclaimedasphaltshingles(RAS)asareplacementforapercentageofthevirginbinderinnewasphaltmixesinCalifornia.Thisobjectivewasachievedthroughthefollowingtasks:

1. Areviewoftheliteratureonresearchrelatedtothetopic,withspecialemphasisontheworkoftheFederalHighwayAdministration(FHWA)andonrecentNationalCooperativeHighwayResearchProgram(NCHRP)projects

2. DevelopmentofaworkplantoevaluatetheeffectofvirginbindersourceandcharacteristicsonpropertiesofcompositebinderscontainingdifferentpercentagesofRAPand/orRAS

5

3. Developmentofarobustandreliabletestingprocedureforevaluatingthehigh-temperaturepropertiesoffineaggregatematrix(FAM)mixesusingasolidtorsionbarfixtureinadynamicshearrheometer(DSR).Low-temperaturepropertiesarebeinginvestigatedinaseparatestudy

4. Evaluationofthehigh-temperaturerheologicalpropertiesofcompositeFAMmixeswithdifferentvirginbindersourcesatdifferentRAPand/orRASpercentages

5. Statisticalanalysisofthetestresults

6. PreparationofasummaryreportandpreliminaryrecommendationsforaddressingtheeffectofvirginbindersourceontheperformanceofcompositebinderswhenincorporatingRAPand/orRASinnewasphaltmixes

Thisreportdocumentstheworkcompletedonalltasks.Itshouldbenotedthatthisprojectwascarriedoutasonepartofalarger,comprehensiveresearchinitiativeintotheuseofhighquantitiesofRAPandRASinnewasphaltmixesinroadandairfieldpavements.OtherparticipantsincludetheCaliforniaDepartmentofTransportation,theCaliforniaDepartmentofResourcesRecyclingandRecovery,andtheFederalAviationAdministration.1.4 ReportLayout

Thisresearchreportpresentsanoverviewoftheworkcarriedoutinmeetingtheobjectivesofthestudy,andisorganizedasfollows:

• Chapter2providesanoverviewoftheliteraturerelatedtothetopic.

• Chapter3summarizestheexperimentplananddescribesthematerialsandtestingmethodologyused.

• Chapter4presentstestresultsandassociateddiscussion.

• Chapter5providesconclusionsandpreliminaryrecommendations.

1.5 MeasurementUnits

AlthoughCaltransrecentlyreturnedtotheuseofU.S.standardmeasurementunits,theSuperpavePerformanceGrading(PG)Systemisametricstandardandusesmetricunits.Inthistechnicalmemorandum,bothEnglishandmetricunits(providedinparenthesesaftertheEnglishunits)areprovidedinthegeneraldiscussion.MetricunitsareusedinthereportingofPGtestresults.Aconversiontableisprovidedonpageviii.

6

2. LiteratureReview

2.1 AsphaltBinder

Asphaltbinderisobtainedfromthedistillationofcrudeoilandisablendofcomplexhydrocarbonscontainingthousandsofdifferentmolecules(3).Morethan90percentofasphaltbinderconsistsofcarbonandhydrogenwiththeremainderconsistingofheteroatoms(sulfur,hydrogen,andnitrogen)andafewmetallicelements(e.g.,vanadium,nickel,andiron).Thepolarmoleculesofasphaltbindercanbecategorizedintofourmainfractions,namelysaturates,aromatics,resins,andasphaltenes(i.e.,SARAfractions).ThechemicalcompositionandproportionsoftheSARAfractionsaredependentonthesourceofthecrudeoilandontherefiningprocessusedtoproducethebinder(3,4).Asphalteneshavethehighestpolarityandmolecularweight,followedbyresins,aromatics,andsaturates(3).Thesefourmaincompoundscanbeassembledinacolloidalstructuretomodelthepropertiesandperformanceofasphaltbinder.Asphalteneformsthecore,whichiscoveredbyresinsthatarebridgedtoaromaticsanddispersedinsaturates,asshowninFigure2.1(4).Asphaltbinderstiffnessandstrengthpropertiesaregenerallyrelatedtoasphaltenesandresins,whileviscousandplasticizingpropertiesaregenerallyrelatedtothearomaticsandsaturates(5).Therheologicalanddesiredperformancepropertiesofasphaltbinderarethereforedependentonthepropertiesoftheindividualfractionsandtheirproportions,whichchangeoverthelifeofapavementduetooxidation,volatilization,andotherweatheringmechanisms.

Figure2.1:Asphaltbindercolloidalstructure.

2.2 AsphaltBinderExtraction

Anumberofstudieshavebeenconductedtoevaluatedifferentsolventsandmethodsfortheextractionandrecoveryofasphaltbinderfrommixes(6,7-10).Petersenetal.(11)evaluateddifferentsolventtypes(trichloroethylene[TCE],toluene/ethanol,andaproprietaryproductknownasEnSolve)andthreecombinationsofextractionandrecoverymethods(centrifuge-Abson,centrifuge-Rotavapor,andSHRP[StrategicHighwayResearchProgram]method-Rotavapor),andfoundtherewasnosignificantdifferencebetweensolventtypeormethod

7

whendeterminingtheasphaltbindercontentandrheologicalpropertiesoftherecoveredbinder.Anotherstudyusingthereflux–RotovaporrecoverymethodalsodemonstratedthatbinderextractedusingeitherTCEorEnSolvehadrelativelysimilarproperties(9).AstudybyStroup-Gardineretal.(12)foundthatusingnormalpropylbromide(n-PB)asanalternativechemicalsolventcanreducetheamountofagingoftheasphaltbinderduringextractionandrecoverywhencomparedtoTCE.Thestudyalsofoundthatthedeterminedbindercontentwasnotinfluencedbysolventtype.However,incompatibilitiesbetweenvarioustypesofpropylbromideandpolymer-modifiedbinderswererecognized.2.3 ReclaimedAsphalt

RAPmaterialshavebeenusedinsmallquantitiesinnewmixesformanyyears.However,inthepastthismaterialhasbeenconsideredonlyasareplacementforvirginaggregate(i.e.,“blackrock”)andnotasapartreplacementforvirginasphaltbinder.ConsequentlythepotentialbinderreplacementandpropertiesoftheagedRAPbinderwerenottakenintoaccountinnewmixdesigns.ThisgenerallydidnotresultinanyproblemsaslongasthepercentageofRAPwaskeptbelowapproximately15percent,aswascommoninmanystatesincludingCaliforniauntilrecently.Recentstudiesandfieldobservations(6,13-15)havedemonstratedthattheagedbinderinreclaimedmaterialscanblendappreciablywithvirginbinder,allowingforbinderreplacementtobeconsideredifRAPandRASareaddedtothemix.However,thepropertiesofthevirginbinderwillbealteredbytheagedRAPandRASbinders,whichcouldinturninfluencetheperformanceofamixintermsofrutting,cracking,raveling,and/ormoisturesensitivity.2.4 TestingBlendedVirgin/ReclaimedAsphaltBinders

2.4.1 IntroductionTodate,themajorityofstudiesonthecharacterizationanddesignofasphaltmixescontainingRAPand/orRASinvolveextractionandrecoveryofasphaltbinderfromthemixusingchemicalsolvents(6,13,14,16-24).Theextractionandrecoverymethodhaslongbeencriticizedforbeinglaborintensive,forpotentiallyalteringbinderchemistryandrheology,andforcreatinghazardouschemicaldisposalissues.Studieshavealsodemonstratedthatsomeoftheagedbindermaystillremainontheaggregateafterextraction,andthusthemeasuredpropertiesfromtheextractedandrecoveredbindermaynotbecompletelyrepresentativeoftheactualpropertiesofthebinderinthemix(11,14).Asphaltbindercanalsostiffenafterextractionduetopotentialreactionsbetweenthebindercompoundsandthesolvent(25).Typically,theextractionprocessalsoblendsagedandvirginbindersintoahomogenouscompositebinderthatmaynotbetrulyrepresentativeoftheactualcompositebinderinthemixafterproduction.RAPandRASstockpilesaretypicallyhighlyvariablebecausetheycontainmaterialsreclaimedfromnumerouslocations.Consequently,obtainingrepresentativebindersforresearch-basedlaboratorytestingbyusingchemicalextractionandrecoveryisnotpossible.Conventionalpracticeforconductinglaboratorytestinghasthereforebeentoproducesimulatedasphaltbindersundercontrolledmixingandagingconditionsasawayofprovidingsomelevelofconsistencyforbetterunderstandingkeyaspectsofthetestingofcompositebinders(26,27).

8

Twoalternativemethodstosolventextractionandrecoveryhavebeeninvestigatedforcharacterizingthepropertiesofblendedbinders,namelytestingasphaltmortarortestingonlythefineaggregatematrixofamix.Initialresultscitedintheliteratureforthesealternativetestingapproachesindicatethattheyareappropriateandjustifyfurtherinvestigation(28-34).2.4.2 AsphaltMortarTestingAsphaltmortartestsareconductedusingtwomortarsamples:onecontainingvirginbinderplusRAP,andonecontainingonlyvirginbinderplustheaggregatesobtainedfromprocessingRAPinanignitionoven(i.e.,theRAPbinderisburnedoffintheignitionoven).Conceptually,ifthetotalbindercontentsandaggregategradationsareexactlythesameforbothsamples,thedifferencesbetweentherheologicalandperformancepropertiesofthetwosamplescanbeattributedtotheRAPbinder(28-30).Anumberofstudieshavebeenconductedusingthisapproachwithdynamicshearrheometer(DSR)andbendingbeamrheometer(BBR)testingtoassessthestiffnessofthesamplesathighandlowtemperatures,respectively(28-30).Maetal.(28)developedaBBRtestingprocedureforasphaltmortarspecimensmadewithsinglesizeRAPmaterial(100percentpassingthe#50sieve[300µm]andretainedonthe#100sieve[150µm]).Basedontherelationshipbetweentheasphaltbinderandasphaltmortarproperties,thelowPGgradeoftheRAPbindercouldbeestimatedwithouttheneedforextractionandrecoveryofthebinder.Theasphaltmortarsamplesevaluatedinthatstudyhadamaximumof25percentbinderreplacementusingtheRAP.Swierzetal.(28)continuedthisworkandfoundthattheBBRtestonasphaltmortarwassufficientlysensitivetodistinguishbetweendifferentRAPsourcesandcontentsinblendedbindersupto25percentbinderreplacement.AsphaltmortarsamplescontainingonlyRAS(upto40percentbinderreplacement)andacombinationofRAPandRASwerealsoevaluatedinthestudy.TheworkculminatedinthedevelopmentofablendingchartthatestimatesthePGgradeoftheblendedbinderinamixbasedontherespectiveRAPandRASpercentages.Hajjetal.(7)comparedtheperformancegradepropertiesofblendedbinderbyusingDSRandBBRtestingofbothrecoveredbinderandasphaltmortar.TheresultswerefoundtobedependentontheamountofRAPinthemix,andalthoughtheresultsofmixeswithupto50percentRAPshowedsimilartrends,themeasuredhigh,intermediate,andlowcriticaltemperaturesofthemortarwerelowerthanthosemeasuredontheextractedbinder.ThedifferencesinresultsincreasedwithincreasingRAPcontent.Thereasonsforthedifferenceswerenotforensicallyinvestigated,butwereattributedinparttotheinfluenceoftheextractionchemistryonfullblendingofthebindersandpossiblytotheeffectofthechemistryonadditionalhardeningofthebinders.PreliminarytestingattheUCPRC(35)foundthatasphaltmortarsamplespreparedwithasphaltbinderandveryfineaggregate(passingthe#50[300µm]andretainedonthe#100[150µm]sieves)weresufficientlyworkabletoconductDSRtestingprovidedthatthebinderreplacementratedidnotexceed25percent.MortarswithhigherbinderreplacementrateswereunworkableandcouldnotbetestedinaDSR.Thestudyconcludedthatalthoughthemortartestdeservesfurtherinvestigation,itmaynotbeappropriatefortestingsampleswithhighbinderreplacementrates(i.e.,>25percent).

9

2.4.3 FineAggregateMatrix(FAM)MixTestingTestingFAMmixesasanalternativetotestingasphaltmortarhasalsobeeninvestigated(8-10).FAMmixesareahomogenousblendofasphaltbinderandfineaggregates(i.e.,passinga#4,#8,or#16[4.75mm,2.36mm,or1.18mm]sieve).TheasphaltbindercontentandthegradationoftheFAMmustberepresentativeofthebindercontentandgradationofthefineportionofafull-gradedasphaltmix.SmallFAMcylindricalbarscanbetestedwithasolidtorsionbarfixtureinaDSR(knownasadynamicmechanicalanalyzer[DMA]).Thistestingapproachissimilartothatusedforasphaltmortarsinthattwosamplesaretested,onecontainingvirginbinderplusRAP,andthesecondcontainingvirginbinderplustheaggregatesobtainedfromprocessingRAPinanignitionoven.AnydifferencesintheresultscanthenbeattributedtotheRAP/RAScomponentoftheFAM.Kanaan(30)evaluatedtheviscoelastic,strength,andfatiguecrackingpropertiesofFAMspecimenswithdifferentamountsofRAS.TheresultsshowedthatFAMtestingdetecteddifferencesinthepropertiesevaluatedamongthevariousmixes,andspecificallythatthestiffnessandstrengthofasphaltmixesincreasedwithincreasingRAScontent.Understrain-controlmode,thefatiguelifeoftheFAMspecimensdecreasedwithincreasingRAScontent,whileunderstress-controlmode,oppositetrendswereobserved.2.4.4 QuantifyingLevelofDiffusionandBlendingAnumberofstudieshavebeenundertakenrecentlytobetterunderstandthediffusionandblendingofagedandvirginbinders.Yaretal.(27)evaluatedandquantifiedtheeffectsoftimeandtemperatureondiffusionrateandtheultimateblendingoftheagedandvirginbindersthroughanexperimental-basedapproachvalidatedwithanalyticalmodelingofdiffusion.Thechangesinthestiffnessofacompositetwo-layerasphaltbinderspecimen(alsoknownasawaferspecimen)weremonitoredinDSRtests.Thewaferspecimenwascomposedoftwo1mmthickasphaltdisksmadewithsimulatedRAPbinderandvirginbinder,respectively.ThisstudyrevealedthatthediffusioncoefficientbetweentwobindersincontactcanbeestimatedfromDSRtestresultsandthatthediffusionmechanismcanbemodeled(i.e.,Fick’ssecondlawofdiffusion).Thediffusionratewasfoundtoincreasewithtemperature,buttheratewasinfluencedbybinderchemistry.Onlylimiteddiffusionandblendingoccurredattemperaturesbelow100°C.Consequently,productiontemperatureandtimeswillneedtobeappropriatelyselectedatasphaltplantstoensuresufficientblendingbetweenthevirginbinderandagedRAPbinder.Krizetal.(31)completedasimilarstudywithsimilarfindings.2.5 LiteratureReviewSummary

KeylearningpointsfromtheliteraturereviewrelevanttothisUCPRCstudyincludethefollowing:

• TheasphaltbinderinRAPandRAScanblendappreciablywithvirginbinderinnewmixes.Thelevelofblendingbetweentheagedandnewbindersdependsonthechemicalcompositionoftheindividualbinders.Thecompatibilityofreclaimedandvirginasphaltbindersfromdifferentsourcesandwithdifferentperformancegradesmustbewellunderstoodtoensureoptimalperformanceofasphaltmixescontaininghighquantitiesofreclaimedasphalt.

10

• Appropriatemethodsforextractingagedbinderfromreclaimedasphaltmaterialsarestillbeingdevelopedandarefocusingontheeffectsofextractionsolventsonthepropertiesofrecoveredbinders.Thesolventscurrentlybeingusedareconsideredtobesufficientlyaggressivetofullyblendagedandvirginbindersextractedfromnewmixes,therebypotentiallyprovidingmisleadingbinderreplacementvaluesandnonrepresentativePGgradingsofblendedbinders.

• AlternativemethodstoextractionandrecoveryarebeingexploredtobettercharacterizetheperformancepropertiesofvirginbindersblendedwiththeagedbindersinRAPandRAS.TestsonmortarandFAMmixeswarrantfurtherinvestigation.

11

3. ExperimentDesign

ThisUCPRCstudyfocusedonevaluatingtheeffectofvirginbindersourceandperformancegradeontheperformancepropertiesofblendedbinderinmixeswithhighquantitiesofRAP(i.e.,≥25percent)andRAS.Thischapterdescribestheexperimentplanandthetestingandevaluationmethodologiesusedinthisstudy.3.1 ExperimentPlan

Theexperimentplanincludedthefollowingthreemaintasks:• Determinetherheologicalpropertiesofthevirginbinders,recoveredRAPbinder,

recoveredRASbinder,andtheblendedbindersatvariousbinderreplacementrates.Testsinclude:+ Performancegrading+ Frequencyandtemperaturesweepteststodevelopmastercurves

• Determinetherheologicalpropertiesoffineaggregatematrix(FAM)mixescontainingdifferentamountsofrecoveredRAPandRAS(bybinderreplacementrates)andvariousvirginbinders.Testsinclude:+ Amplitudesweepstraintesttodeterminethelinearviscoelasticregion+ Frequencyandtemperaturesweepteststodevelopmastercurves

• ComparetheresultsofasphaltbinderandFAMmixtestsusingdifferentanalysistechniquesincludingstatisticalevaluationofsignificantfactors

3.1.1 MaterialSamplingandTestingFactorialTable3.1summarizesthesamplingandtestingfactorialforthematerialsusedinthisstudy.ThreebindergradesweresampledfromthreedifferentCaliforniarefineriesthatusethreedifferentprimarycrudeoilsources.Therejuvenatingagentwasobtainedfromoneoftherefineries.

Table3.1:GeneralMaterialPropertiesFactor Factorial

LevelDetails

Asphaltbindersourceandgrade 5 PG64-16andPG58-22(sourcedfromRefinery-A)PG64-161andPG58-22(sourcedfromRefinery-B)PG64-16(sourcedfromRefinery-C)

Aggregatetype 1 GraniticRAPsource 1 SacramentoRASsource 1 Tear-offshingles(Oakland)RAPcontent(bybinderreplacement) 3 0%(allfivebinderstested)

25%(allfivebinderstested)40%(twoRefinery-Abinderstested)

RAScontent 1 5%totalweightofmix(~15%bybinderreplacement)Rejuvenatingagent 1 Petroleumbase(sourcedfromRefinery-C)

12%byweightoftotalbinderusedinthemix1NotethatalthoughPG64-16binderwasrequestedfromRefinery-B,thebindersuppliedmettherequirementsforPG64-22

12

3.2 AsphaltBinderTesting

3.2.1 PerformanceGradingofExtractedBinderIn2001,investigatorsintheNCHRP9-12project(6)proposedguidelinesfortheuseofRAPintheSuperpavemixdesignmethod.TheseproposedguidelinesrequiredeterminationoftheperformancegradeoftheRAPbinderformixescontainingmorethan25percentRAPtoensurethatanappropriatevirginbinderperformancegradecanbeaccuratelyselectedfromablendingchart.Thefollowingprocedure,proposedintheNCHRPstudyguidelines,wasusedfordeterminingtheperformancegrade(PG)ofthereclaimedasphalt(RAPorRAS)bindersusedintheUCPRCstudy:Asphaltbinderextractionandrecovery

1. Obtainarepresentativesampleofreclaimedasphaltmaterial(about1,000g)thatwillprovideapproximately50to60gofrecoveredbinder(assuming5percentRAPbindercontent).

2. ExtractandrecovertheasphaltbinderfromthereclaimedasphaltfollowingtheAASHTOT164procedure.Tolueneorn-propylbromidemaybeusedasthechemicalsolvent.Documenttheuseofanyothersolventsonthetestsheet.Nitrogenblanketingisrecommendedtopreventundesiredbinderoxidationduringextraction.

Asphaltbinderperformancegrading

1. DeterminetheperformancegradeoftheextractedreclaimedasphaltbinderaccordingtoAASHTOM320.Rotationalviscometer,binderflashpoint,massloss,andpressureagingvessel(PAV)arenotrequiredforreclaimedasphaltbindergrading.PAVagingisnotnecessarygiventhatthereclaimedasphaltbinderhasalreadybeenagedinthepavement(forRAP)oronaroof(forRAS).

2. Performadynamicshearrheometer(DSR)testwith25mmparallelplategeometryontherecoveredreclaimedasphaltbinder(AASHTOT315)todeterminethecriticalhightemperatureofthebinder(temperatureatwhichG*/sin(δ)is1.0kPa).

3. Agetheextractedreclaimedasphaltbinderinarollingthin-filmoven(RTFO,AASHTOT240).

4. PerformaDSRtestwith25mmparallelplategeometryontheRTFO-agedrecoveredreclaimedasphaltbindertodeterminethecriticalhightemperatureofthebinderafterRTFOaging(temperatureatwhichG*/sin(δ)is2.2kPa).

5. CalculatethehighPGlimitoftherecoveredreclaimedasphaltbinderbasedonthelowesttemperaturesobtainedinSteps2and4.

6. PerformaDSRtestwith8mmparallelplategeometryontheRTFO-agedrecoveredreclaimedasphaltbindertodeterminethecriticalintermediatetemperature(temperatureatwhichG*xsin(δ)is5,000kPa).

7. Performabendingbeamrheometer(BBR)test(AASHTOT313)ontheRTFO-agedrecoveredreclaimedasphaltbindertodeterminethecriticallowtemperatures

13

(temperatureatwhichcreepstiffness[S]isequalto300MPaandtemperatureatwhichm-valueis0.30).

8. CalculatethelowPGlimitoftherecoveredreclaimedasphaltbinderbasedonthehighest(leastnegative)temperaturesdeterminedinStep7.

3.2.2 BlendedBinderPreparationBlendedasphaltbinderswerepreparedbymixingvirginasphaltbindersandrecoveredRAPbinderatratesof75:25and60:40(representingbinderreplacementratesof25and40percent),andrecoveredRASbinderatarateof85:15(representingabinderreplacementrateof15percent).Thebindersweremixedwithaglassstirreruntilahomogeneousblendwasobtained.Aftermixing,theblendedbinderswereconditionedinanRTFOperAASHTOT240tosimulatetheshort-termagingthatoccursduringasphaltmixproduction.AttemptstoprepareahomogenizedrecoveredRASandvirginbinderblendwereunsuccessful,andthereforeblendedbindertestingwasonlyconductedonblendedextractedRAPandvirginbinders.3.2.3 FrequencySweepTestsTheRTFO-agedblendedbindersweretestedwithaDSRusing8mmparallel-plategeometrywitha2mmplate-to-plategapsettingat4°C,20°C,and40°Catfrequenciesrangingbetween0.1Hzand100Hzateachtemperature.Theamplitudestrainwassetat1.0percenttoensurethebindersbehavedinalinearviscoelasticrange.Themeasuredcomplexshearmodulusvalues(G*)wereusedtoconstructasphaltbindermastercurvesatthereferencetemperature(i.e.,20°C)byfittingthedatatothesigmoidalfunctionshowninEquation3.1.Thetestingfrequenciesatanytestingtemperaturewereconvertedtothereducedfrequencyatthereferencetemperatureusingatime-temperaturesuperpositionprinciple(Equation3.2)withtheaidofanArrheniusshiftfactor(Equation3.3).TheparametersofthesigmoidalfunctionaswellastheactivationenergytermintheArrheniusshiftfactorequationwereestimatedusingtheSolverfeatureinMicrosoftExcel®byminimizingthesumofsquareerrorbetweenpredictedandmeasuredvalues.Examplesofthemeasuredshearmodulusandthecorrespondingmastercurveat20°CforblendedasphaltbindersareshowninFigureandFigure2,respectively.

𝑙𝑜𝑔 𝐺∗(𝑓!) = δ+ !!!!!!!×!"#(!!)

(3.1)where: δ,𝛼,𝛽,𝑎𝑛𝑑 𝛾aresigmoidalfunctionparameters

𝑓! isthereducedfrequencyatreferencetemperature𝑇!.

𝑙𝑜𝑔 𝑓! = 𝑙𝑜𝑔 𝑎! 𝑇 + 𝑙𝑜𝑔( 𝑓) (3.2)where: 𝑓isthetestingfrequencyattestingtemperatureT(ºC)

𝑓! isthereducedfrequencyatreferencetemperature𝑇!(℃)

𝑙𝑜𝑔 𝑎! 𝑇 = !!" !" ×!

(!!− !

!!) (3.3)

where: 𝑎! 𝑇 istheshiftfactorvaluefortemperatureT(ºK)𝐸!isactivationenergyterm(Joules[J]/mol)𝑇! isthereferencetemperatureindegreesKelvin

14

Figure3.1:Exampleofmeasuredshearmodulusofablendedbinderat20°C.

Figure2.2:Exampleofadevelopedmastercurveforablendedasphaltbinderat20°C.

3.3 FineAggregateMatrixTesting

3.3.1 PreliminarySamplePreparationPreliminaryFAMsamplepreparationmethodswerebasedonthosecitedintheliterature(8-10).Mixeswerepreparedwithmaterialpassingthe#4(4.75mm),#8(2.36mm),and#16(1.18mm)sieves.The#4and#8mixesprovidedsatisfactoryquantitiesofFAM;the#16mixesweredifficulttosieveandverylargesamplesneededtobepreparedtoobtainsufficientquantitiesofmixtopreparecompactedspecimens.

15

3.3.2 UCPRCFAMSamplePreparationMethodAfteraseriesoftrialtests,thefollowingprocedurewasdevelopedandadoptedforthepreparationofFAMspecimensfortheUCPRCstudy:

1. Prepareafull-gradedasphaltmixatoptimumbindercontentwithvirginbinderandvirginaggregatesaccordingtoAASHTOR35.

2. Short-termagethelooseasphaltmixfortwohoursatthemixcompactiontemperaturefollowingAASHTOR30.

3. DeterminethetheoreticalmaximumspecificgravityaccordingtoAASHTOT209(RICEtest).

4. Sievethelooseasphaltmixtoobtainapproximately1.5kgofmaterialpassingtheselectedsieve(i.e.,#4,#8,or#16).Whererequired,gentlytampdownthemixtobreakupagglomerations.Mixespassingthe#16sievearenotrecommendedgiventhatlargevolumesofmaterialneedtobepreparedtoobtainsufficientmixtopreparecompactedsamples.

5. Determinethebindercontentofthefinemixbyextractionandrecovery(AASHTOT164).(ExtractionandrecoverywasusedinthisUCPRCstudyasanalternativetoignitionoventesting[AASHTOT308]duetoconcernaboutlosingveryfineaggregateparticlesduringtheignitionprocess).

6. SievetheRAPmaterialtoobtainapproximately1.5kgoftherequiredgradation(i.e.,#4,#8,or#16).

7. DeterminethebindercontentandgradationoffineRAPparticlesbyextractionandrecovery.

8. Determinevirginbinder,virginaggregate,RAP,andRAPaggregatequantitiesforselectedbinderreplacementvaluesbasedonthebindercontentandaggregategradationsdeterminedfromtheextractionandrecoverytests(Step5andStep7).

9. PrepareasphaltmixeswithdifferentpercentagesofRAPbasedontherequiredbinderreplacementrate.

10. DeterminethetheoreticalmaximumgravityoftheFAMmix.11. Short-termagethelooseFAMmixfortwohoursatthemixcompactiontemperature

followingAASHTOR30.12. CompacttheFAMmixinaSuperpavegyratorycompactor(followingAASHTOT312)to

fabricateaspecimenwith150mmdiameterand50mmheightwith10to13percenttargetair-voidcontent.

13. Subjectthespecimentolong-termaging(i.e.,PAV)ifrequiredforthetestingphase.14. Core12.5mmcylindricalFAMspecimensfromthe150mmdiameterspecimen.

Examplesofa150mmcompactedspecimenandcored12.5mmspecimensareshowninFigure.

15. Determinetheair-voidcontentoftheFAMspecimensbyfirstdeterminingthesaturatedsurface-dryspecificgravity(AASHTOT166A)andthencalculatingtheair-voidcontentswiththisandthepreviouslymeasuredtheoreticalspecificgravity(Step10)accordingtoAASHTOT269.TheweighstationusedformeasuringFAMspecimenair-voidcontentisshowninFigure.

16. DrytheFAMspecimensandstoretheminasealedcontainer(Figure)topreventdamageandexcessiveshelf-agingpriortotesting.

16

Figure3.3:FAMspecimenscoredfromaSuperpavegyratory-compactedspecimen.

Figure3.4:Weighstationforair-voidmeasurement(a)andFAMspecimenstorage(b).

Afterpreparationofanumberoftrialmixes,itwasobservedthatthe#4mixeshadlargeaggregatesrelativetothediameterofthe12.5mmcore.Itwasconcludedthatthepresenceoftheselargeraggregatescouldpotentiallyinfluencethetestresultsandintroducevariabilitybetweentestresultswithinthesamemix.Consequentlyallfurthertestingwasrestrictedtomixespreparedwithmaterialpassinga#8(2.36mm)sieve.

17

3.3.3 FineAggregateMatrixMixTestSetupFAMspecimenspreparedaccordingtothemethoddescribedinSection3.3.2weretestedusingasolidtorsionbarfixtureinanAntonPaarMCR302DSR.Thistestingconfigurationisknownasadynamicmechanicalanalyzer(DMA).WhenperformingtestsonFAMspecimens,specialattentionmustbegiventoensuringthatthespecimeniscorrectlyalignedandsecurelyclampedintheDSR.Eachspecimenmustbecarefullyinspectedandcheckedtoensurethatitsedgesarecleanandundamagedintheclampingzone,andthattherearenolocalizedweakareas(e.g.,aggregatestornoutduringcoring)thatcouldinfluencetheresults.Inotherstudies(8-10,30),referenceismadetotheuseofsteelcaps,gluedtobothendsoftheFAMspecimen,tosecurethespecimenintothetestingframe.InitialtestingattheUCPRCcomparedtestswithandwithoutthecaps.ThisapproachwasnotpursuedbasedondiscussionswiththeDSRmanufacturer,whostatedthatthegluezonebetweenthecapandthespecimenwouldlikelyhaveasignificantinfluenceontheresults.InsteadacustomclamprecommendedbytheDSRmanufacturerwasused.FigureshowsthefixedspecimenintheDSR-DMAusedinthisproject.

Figure3.5:DSR-DMAtorsionbarfixtureusedforFAMtesting.

3.3.4 AmplitudeSweepTestsAmplitudesweeptestswereperformedontheFAMspecimenstodeterminethelinearviscoelasticrangeofmaterialbehavior.TheshearmodulusofeachFAMspecimenwasmeasuredat4ºCandafrequencyof10Hzwhentheshearstrainincreasedfrom0.001to0.1percent.AnexampletestresultisshowninFigure.TheshearstiffnessoftheFAMspecimenisindependentoftherateofshearstaininthelinearviscoelasticregion.

18

Figure3.6:ExampleFAMspecimenamplitudesweeptestresults.

3.3.5 FrequencySweepTestsFrequencysweeptestsmeasuredthecomplexshearmodulusinawiderangeoffrequencies(0.1Hzto25Hz)atthreedifferenttemperatures(4°C,20°C,and40°C).Basedontheresultsoftheamplitudesweeptests,frequencysweeptestsatastrainrateof0.002percentwerecompletedtoensurethatthematerialwasinthelinearviscoelasticregion.FAMspecimenshearmodulusmastercurveswereconstructedbasedontime-temperaturesuperpositionprinciplesusingthemeasuredmoduliovertherangeoftemperaturesandfrequencies.ThefunctionsdescribedinSection3.2.3wereusedtoconstructshearmodulusmastercurvesfortheFAMspecimens.Examplesofshearmodulusanddevelopedmastercurvesatthe20°CreferencetemperatureforaFAMmixareshowninFigureandFigure,respectively.

Figure3.7:ExampleofmeasuredshearmodulusofaFAMspecimenat20°C.

19

Figure3.8:ExampleofshearmodulusmastercurveofaFAMspecimenat20°C.

20

4. TestResults

4.1 AsphaltBinderTesting

4.1.1 RAPandRASBinderCharacterizationRepresentativesamplesofreclaimedasphaltpavement(RAP)andreclaimedasphaltshingle(RAS)materialswerecollectedandsenttoacontractinglaboratoryforextractionandrecoveryoftheasphaltbinder.Thebinderwasextractedusingtrichloroethylene(AASHTOT164)andrecoveredusingtheAbsonmethod(ASTMD1856).TheextractedRAPbinderwastestedaccordingtotheNCHRP9-12guidelinesdiscussedinSection3.2.1.TheperformancegradingcriteriaandvaluesoftherecoveredRAPbindersarelistedinTableandsuggestameangradingequatingtoPG88-6.Theresultswereconsideredtobereasonablyrepresentativeofanagedbinder.Itisnotknownwhetherthechemicalsolventsusedintheextractionprocessinfluencedtheresultsinanyway.FurtherresearchisrequiredtoevaluatetheinfluenceofdifferentchemicalsolventsontheextractionandrecoveryofbindersfromRAPmaterials,includingthosecontainingasphaltrubberandpolymer-modifiedbinders.

Table4.1:High,Intermediate,andLowCriticalTemperaturesofRAPBindersCriticalTemperature Parameter MeanTemperature1

(°C)S

(MPa)m

High(Original,DSR)High(RTFO-aged,DSR)Intermediate(RTFO-aged,DSR)

G*/sinδ≥1.00kPaG*/sinδ≥2.20kPa

G*xsinδ≤5,000kPa

92.886.943.9

N/A N/A

Low@0°C(RTFO-aged,BBR)Low@10°C

Testedat0°CTestedat10°C -6.3

310127

0.2620.365

1Meanoftwotests

ThebinderrecoveredfromtheRAScouldnotbetestedaccordingtoAASHTOM320sinceitwasnotsufficientlyworkabletoallowmoldingofthetestspecimensafterthreehoursofheatingat190ºC,asshowninFigure.Thisobservationwasconsistentwithotherstudies,whichreportedmeasuredhighPGlimitsofRASbinderinexcessof120°Candestimatedlimitstobeashighas240°C(34,36).4.1.2 BlendedRAPandVirginBinderCharacterizationAsecondsampleofRAPmaterialwassenttoanexternallaboratoryforbinderextractionandrecovery.Atoluene-ethanolmix(85:15),whichhasbeenshowntohavelessdetrimentaleffectonthechemistryandrheologyofextractedasphaltbinders(31),wasusedasthesolventinthisextraction.TherecoveredRAPbinderwasblendedwiththedifferentvirginbinderstosimulate25percentand40percentbinderreplacement.Apartialfactorialexperimentoftestingwascompletedtoevaluatethepropertiesoftheseblendedbinders(seeTable3.1)asfollows:• Allfivebindersweretestedat25percentbinderreplacement• Twoofthebinders(sampledfromRefinery-A)weretestedat40percentbinder

replacement

21

• Oneofthebinders(Refinery-APG64-16)wastestedwitharejuvenatingagentat40percentbinderreplacement

Figure4.1:RecoveredRASbinderafterthreehoursofconditioningat190°C.

Thevirginandblendedbinderswereshort-termagedinanRTFOandthentestedwithaDSR(8mmparallelplatewith2mmgapsetting)tomeasuretheshearmoduliofthebindersatthreetemperatures(4°C,20°C,and40°C)andarangeoffrequencies(0.1to100Hz).ThemastercurveparametersfortheevaluatedbindersareprovidedinTable.

Table4.2:MasterCurveParametersforVirginandBlendedBinders

BinderReplacement

(%)

MixIdentification1 MasterCurveParameters

δ α Β γ Ea(J/mol)

0

PG64APG64BPG64CPG58APG58B

-3-3-3-3-3

4.734.614.894.534.49

1.321.341.291.080.80

0.690.700.780.760.81

191,301194,798191,105181,467167,421

25(RAP)

25%RAP_PG64A25%RAP_PG64B25%RAP_PG64C25%RAP_PG58A25%RAP_PG58B

-3-3-3-3-3

5.045.024.985.085.07

-1.39-1.49-1.75-1.12-1.03

-0.62-0.58-0.69-0.60-0.61

203,802211,663211,792195,467192,711

40(RAP)

40%RAP_PG64A40%RAP_PG64A+RA40%RAP_PG58A

-3-3-3

4.995.055.01

-1.83-1.14-1.52

-0.61-0.67-0.58

217,237198,743208,848

15(RAS)

Nottested

1A,B,andCdenotethesourcerefinery. RA=RejuvenatingagentFigureshowsthemastercurvesofthefivevirginbindersevaluated.ThemoduliofthePG58asphaltbinderswerelowerthanthePG64binders,asexpected.ThethreePG64bindershadsimilarshearmoduli,withonebinder(Refinery-C)beingslightlysofteratlowfrequenciesandstifferathighfrequencies.ThePG58-22binderfromRefinery-BwassofterthantheequivalentbinderfromRefinery-A.

22

Figure4.2:Shearmoduliofvirginasphaltbinders(20°C).

Figureshowstheshearmodulusmastercurvesforblendedbinderswith25percentRAPbinderreplacement.AlthoughtheRAPbinderreducedthedifferencesbetweenthemoduliofthefiveasphaltbinders,therankingofthebinderswasstillcontrolledbythepropertiesofthebasebinders.Themastercurvesoftheblendedbindersmergedathighfrequencies(>1,000Hz),regardlessofthebasebindersourceandgrade.Figureshowstheshearmodulusmastercurvesforblendedbinderscontaining40percentRAPbinderreplacement.ThePG64-16basebinderblendwasstifferthanthePG58-22blend,asexpected.Therejuvenatingagentreducedthestiffnessoftheblendedbindertoalevelapproximatelyequaltothatofthevirginbinder.ThemastercurvesoftheblendedbinderwerenormalizedtotheircorrespondingvirginbindermastercurvestomoreeasilycomparetheeffectsofincorporatingRAPintothedifferentvirginasphaltbinders(Figure).Thisanalysisshowedthefollowing:

• Using25percentRAPbinderreplacementincreasedthemodulusofthevirginbinderbyuptoeighttimes,dependingonthebindersource,bindergrade,andtestingfrequency.

• ThestiffnessofthePG58bindersincreasedmorethanthatofthePG64bindersforbindersfromthesamerefinery.

• ThebindersfromRefinery-AwereleastaffectedbytheadditionofRAP.

• Whenusing40percentRAPbinderreplacement,thestiffnessoftheblendedbinderincreasedbyupto13.5timesthatofthevirginbinder.

• Whenrejuvenatingagentwasadded,thenormalizedcurveconfirmedthattheshearmodulusoftheblendedbinderwith40percentRAPbinderreplacementwassimilartothatofthevirginbinderovertherangeoftestingfrequencies.

23

• Increasesintheshearmodulusofblendedbindersmostlyoccurredinthefrequencyrangeof0.00001Hzand0.1Hz.

Figure4.3:Shearmoduliofbinderswith25percentRAPbinderreplacement(20°C).

Figure4.4:Shearmoduliofbinderswith40percentRAPbinderreplacement(20°C).

24

PG64-16(Refinery-A) PG58-22(Refinery-A)

PG64-16(Refinery-B) PG58-22(Refinery-B)

Figure4.5:Comparisonofnormalizedshearmodulimastercurvesforblendedbinders.

25

PG64-16(Refinery-C)

Figure4.5:Comparisonofnormalizedshearmodulimastercurvesforblendedbinders(continued).

26

4.2 FineAggregateMatrixMixTesting

FAMmixspecimenswerepreparedaccordingtotheproceduredescribedinSection3.3.2.Atotalof26FAMmixeswereevaluated.ThebindercontentsoftheRAPandRASweredeterminedtobe7.1and23.7percentrespectively,bytotalweightofthemix,usingtheasphaltbinderextractiontest(AASHTOT164).ThetargetaggregategradationusedwasthesameforalltheFAMmixesregardlessofthebindergradeandRAPorRAScontent,andisshowninFigure.ThegradationandquantityofvirginaggregatewereadjustedaccordingtothequantityandgradationoftheRAPand/orRASinthemixtomeetthetargetFAMgradation.TheFAMmixescontainingRAShadaslightlycoarsergradationthantheFAMmixeswithvirginbinderonlyandwithRAPbinderduetothecoarsergradationoftheRASmaterials.However,thedifferencewasnotsignificantgiventhatonly5.4percentRAS(bytotalweightofmix)wasused.

Figure4.6:GradationofFAM,RAP,andRASmaterials.

4.2.1 FAMSpecimenAir-VoidContentOneofthemainconcernswithregardtotherepeatabilityoftestresultsusingFAMspecimensistherangeofair-voidspermixtype.FigureandFigureshowtheair-voidcontentsmeasuredonthespecimens(fourspecimenspermix).Theair-voidcontentsrangedbetween10.5and12.5percent,whichwaswithinthetargetrangeandconsideredacceptableforthisstudy.Air-voidcontentswereconsideredinalltestresultanalyses.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Perc

ent P

assi

ng

Particle Size (mm)

RAP gradation

RAS gradation

FAM target gradation

0.075 0.1500.3000.6001.1802.360

#200 #100 #50 #30 #16 #8

0.075 0.150 0.300 0.600 1.180 2.360

Sieve Number

27

Figure4.7:FAMspecimenair-voidcontentsforPG64mixes.

Figure4.8:FAMspecimenair-voidcontentsforPG58mixes.

4.2.2 AmplitudeSweepStrainTestResultsThestrainlimitsforlinearviscoelastic(LVE)behavioroftheFAMmixes,determinedfromtheresultsoftheamplitudesweeptest,areshowninFigureandFigure.Thefollowingobservationsweremade:

• TheLVEstrainlimitswereinfluencedbyvirginbindergrade,bindersource,andRAP/RAScontent.TheeffectofbindersourceappearedtohavealesserinfluenceontheresultsofthePG64binderscomparedtothePG58binders.

• TheRAPbinderappearedtomobilizeandblendwiththevirginbinderduringmixing,therebychangingtheviscoelasticpropertiesofthemixasshownbythereductionintheLVEstrainlimit.

28

Figure4.9:FAMspecimenLVErangeformixeswithPG64virginbinders.

Figure4.10:FAMspecimenLVErangeformixeswithPG58virginbinders.

• TheLVEstrainlimitdecreasedwithincreasingRAPcontent,asexpected.Replacing25

and40percentofthevirginbinderwithagedbinderfromtheRAPresultedinabout20to70percentand70to90percentreductionintheLVEstrainlimit,respectively.

• ReductionsinLVEwerealsonotedonthemixescontainingRAS,withthechangeconsistentwiththepercentbinderreplacement(15percent).

• RejuvenatingagenthadanotableinfluenceonthemixescontainingRAP,butonlyamarginalinfluenceonthemixescontainingRAS.ThisimpliesthattheRASbindermightnothavebeeneffectivelymobilizedatthemixproductiontemperaturesusedinthis

29

studyanddidnoteffectivelyblendwiththevirginbinderevenwhenarejuvenatingagentwasadded.Inthiscase,theobservedreductionsinLVEontheRASmixescanprobablybeattributedtotheeffectivelowervirginbindercontent,ratherthantheeffectofthestifferblendedbinder.

4.2.3 FrequencyandTemperatureSweepTestResultsSigmoidalfunctionmastercurveswereconstructedusingthemeasuredshearmodulusatvariouscombinationsoftemperatureandfrequency.Theestimatedparametersofthesigmoidalfunction(Equation3.1)andactivationenergytermintheArrheniusshiftfactor(Equation3.3)fortheFAMmixesareprovidedinTable.

Table4.3:MasterCurveParametersforFAMMixesBinder

Replacement(%)

MixID1 MasterCurveParameters

δ α β γ Ea(J/mol)

0

PG64APG64BPG64CPG58APG58B

00000

3.763.873.633.713.74

-0.96-0.93-1.41-0.79-0.53

-0.52-0.43-0.62-0.52-0.51

164,414174,701172,503162,828158,722

25(RAP)

25%RAP_PG64A25%RAP_PG64B25%RAP_PG64C25%RAP_PG58A25%RAP_PG58B

00000

4.173.994.103.963.99

-1.06-1.19-1.22-1.07-1.19

-0.39-0.38-0.45-0.42-0.38

176,435179,082179,341170,216165,906

40(RAP)

40%RAP_PG64A40%RAP_PG64A+RA40%RAP_PG64B40%RAP_PG64B+RA40%RAP_PG64C40%RAP_PG64C+RA40%RAP_PG58A40%RAP_PG58B

00000000

4.213.844.084.144.603.954.104.29

-1.06-1.03-1.14-0.86-0.94-1.17-1.15-0.85

-0.34-0.46-0.36-0.40-0.35-0.49-0.38-0.36

180,414166,743177,121170,255173,209167,399171,885169,832

15(RAS)

15%RAS_PG64A15%RAS_PG64A+RA15%RAS_PG64B15%RAS_PG64B+RA15%RAS_PG64C15%RAS_PG64C+RA15%RAS_PG58A15%RAS_PG58B

00000000

3.743.803.653.473.773.983.793.82

-0.93-0.70-0.88-0.87-1.18-0.74-0.88-0.65

-0.45-0.48-0.42-0.49-0.53-0.54-0.42-0.44

170,253162,233171,575169,124166,295160,332170,828161,161

1A,B,andCdenotethesourcerefinery. RA=RejuvenatingagentTheshearmodulusmastercurvesfortheFAMmixesdifferentiatedbybinderreplacementrateareshowninFigurethroughFigure,anddifferentiatedbybindersourceareshowninFigurethroughFigure.NormalizedmastercurvesareincludedwiththelattergroupofplotstobetterillustratetheeffectoftheRAPandRAS.ThenormalizedcurveswereobtainedbydividingthemodulioftheFAMmixeswithbinderreplacementbythecorrespondingmoduliofthecontrolmixesateachrespectivefrequency.Thefollowingobservationsweremade:

30

• Thedifferencesinshearmodulusbetweenthedifferentcontrolmixeswereconsistentwiththedifferencesinbindergrade.Minordifferenceswerenotedbetweenthebinderswiththesamegradebutfromdifferentrefineries;thisbeingattributedtotheslightdifferencesbetweentheair-voidcontentsofeachspecimenandpotentiallytothebinder(i.e.,crudeoil)source.MixesproducedwithPG58binderswerelessstiffthanthemixesproducedwithPG64binders,asexpected.

• AddingRAPtothemixincreasedthestiffnessofallthemixesatallfrequencies,asexpected.Themixeswith40percentbinderreplacementwerecorrespondinglystifferthanthosewiththe25percentbinderreplacement,especiallyatthelowertestingfrequencies.Thenormalizedplotsshowthat25percentand40percentbinderreplacementcausedrespectivestiffnessincreasesupto4.5timesand7.5timesthatofthevirginbinder.ThevariationbetweenthedifferentmixesandbindergradeswaslessapparentwhencomparedtothemixeswithoutRAPbinderreplacement.

• AddingRAStothemixesappearedtohavelittleeffectontheshearmodulus,supportingtheconclusioninSection4.2.2thattheRASbinderdidnotfullyblendwiththevirginbinderandthatdifferencesinperformancebetweenthevirginandblendedbindersareattributabletodifferencesintheeffectivebindercontentandtoair-voidcontent(seeFigureandFigure).

• TheshearmodulioftheFAMmixeswithrejuvenatingagentwerelowerthoseofthecorrespondingmixeswithouttherejuvenator,asexpected.TheeffectoftherejuvenatingagentwasmorenoticeableinthemixescontainingRAPthaninthemixescontainingRAS.

4.2.4 AnalysisofVariance(ANOVA)TheANOVAapproachwasusedtostatisticallyidentifythesignificancelevelofinfluentialfactors,whichincludethevirginbindersourceandgrade,percentageofRAPandRASbinderreplacement,anduseofarejuvenatingagent.TheANOVAwasperformedusingthecomplexshearmodulus(G*)valuesat0.001Hz,1.0Hz,and1,000Hzfrequenciesatthereferencetemperatureof20°Casthedependentvariables,andusingbindersource,bindergrade,percentbinderreplacement,anduseoftherejuvenatingagentastheindependentvariables.ThechoiceofG*0.001Hz,G*1Hz,andG*1,000Hzasthedependentvariableseliminatedanypotentialbiascausedbyfrequencyandtemperature.Thenullhypothesisfortheanalysiswasthatthemeanshearmoduluswasthesameforallindependentvariablecategories(i.e.,thesamplemeansofG*0.001Hzwouldbeequalregardlessoftheamountofbinderreplacement).Asignificancelevelof0.01wasusedintheanalysis(i.e.,anyvariablewithap-valuelargerthan0.01wasconsideredtobestatisticallyinsignificant).

31

Figure4.11:MastercurvesofcontrolFAMmixes. Figure4.12:MastercurvesofFAMmixeswith25percentRAP

binderreplacement.

Figure4.13:MastercurvesofFAMmixeswith40percentRAP

binderreplacement.Figure4.14:MastercurvesofFAMmixeswith15percentRAS

binderreplacement.

32

Figure4.15:PG64-16-A:ShearandnormalizedmodulusmastercurvesofFAMmixes.

Figure4.16:PG58-22-A:ShearandnormalizedmodulusmastercurvesofFAMmixes.

33

Figure4.17:PG64-16-B:ShearandnormalizedmodulusmastercurvesofFAMmixes.

Figure4.18:PG58-22-B:ShearandnormalizedmodulusmastercurvesofFAMmixes.

34

Figure4.19:PG64-16-C:ShearandnormalizedmodulusmastercurvesofFAMmixes.

35

TheANOVAresultsarelistedinTable.Basedonthep-valuesforthesignificantvariables,theamountofreclaimedasphaltmaterialusedwasthemostsignificantfactorinfluencingshearmodulusatthethreedefinedtestingfrequencies.Theuseoftherejuvenatingagentwasthenextmostsignificantfactor.AsphaltbindersourceandbindergradehadtheleastinfluenceontheshearmodulusofFAMmixesattheselectedfrequencies.

Table4.4:ANOVAResults

Variable TypeG*0.001Hz G*1Hz G*1,000Hz

F-value p-value F-value p-value F-value p-value

%BinderReplacement

0%25%RAP40%RAP15%RAS

135.789 2.52e-15 121.726 1.63e-14 47.579 1.3e-08

BinderSourceRefinery-ARefinery-BRefinery-C

0.217 0.806 15.859 5.77e-06 9.204 0.000434

BinderGradePG64-16PG64-16PG58-22

2.920 0.064 1.043 0.361 0.174 0.841182

RejuvenatingAgentEffect

NoRAWithRA 91.360 1.68e-12 69.448 9.58e-11 15.319 0.000298

4.2.5 ComparingAsphaltBinderandFAMTestResultsFigurethroughFigureshowtherelationshipbetweentheshearmoduliofasphaltbindersandthecorrespondingshearmodulioftheFAMmixesatfrequenciesof0.1Hz,1.0Hz,and10Hz(atthe20°Creferencetemperature),obtainedfromfrequencysweeptesting.Thesefrequencieswereselectedsinceloadingfrequenciesbeyondthisrangearenottypicalonin-servicepavements.Reasonablecorrelations(r2values)wereobservedbetweentheasphaltbinderstiffnessesandtheFAMmixstiffnessesatthesethreefrequencies.DiscrepanciesbetweenthetwomeasuredstiffnessesmaybeanindicationthatcompleteblendingofthevirginandreclaimedasphaltbinderswasnotachievedintheFAMmix,butwasforcedduringthechemicalextractionandrecovery.Althoughthesepreliminaryresultsappearpromising,onlyalimitednumberoftestswerecompleted,andadditionaltestingwillberequiredbeforefirmconclusionscanbedrawn.

36

Figure4.20:Comparisonofasphaltbinder

andFAMmixshearmodulus(0.1Hzat20°C).Figure4.21:Comparisonofasphaltbinder

andFAMmixshearmodulus(1.0Hzat20°C).

Figure4.22:ComparisonofasphaltbinderandFAMmixshearmodulus(10Hzat20°C).

37

5. ConclusionsandInterimRecommendations

ThisreportsummarizesthemainfindingsfromaprojectfundedbytheNationalCenterforSustainableTransportation(NCST)toinvestigatetheuseofhigherpercentagesofreclaimedasphaltpavement(RAP)andreclaimedasphaltshingles(RAS)asareplacementforapercentageofthevirginbinderinnewasphaltmixesinCalifornia.Theresearchfocusedontestingproceduresthatdonotfirstrequirechemicalextractionandrecoveryoftheage-hardenedasphaltbindersfromtheRAPandRAS.Fivedifferentasphaltbinderscoveringtwoperformancegrades(PG64-16andPG58-22)andsourcedfromthreeCaliforniarefinerieswereevaluatedinthisstudy.TheinfluenceoftwodifferentpercentagesofRAP(25and40percentbybinderreplacement)andonepercentageofRAS(15percentbybinderreplacement)wereevaluatedthroughpartialfactorialasphaltbindertestingandfullfactorialfineaggregatematrix(FAM)mixtesting.Theeffectofapetroleum-basedrejuvenatingagentaddedtoselectedmixes(with40percentRAPand15percentRASbinderreplacement)wasalsoinvestigated.Testingwaslimitedtotheintermediatetemperaturepropertiesofthemixes(i.e.,4°Cto40°C).Keyobservationsandfindingsfromthisprojectincludethefollowing:

• AsphaltbinderextractedandrecoveredfromRAScouldnotbetestedduetoitsveryhighstiffness.TheRASbinderwasnotsufficientlyworkabletomoldsamplesfortestinginadynamicshearrheometer(DSR)orinabendingbeamrheometer(BBR).

• Testingproceduresweredevelopedaspartofthispreliminarytestingphasetomeasuredynamicshearmodulusatdifferenttemperaturesandfrequencies,andamethodforpreparingandtestingFAMspecimenswasdeveloped.Cylindricalspecimens0.5in.(12.5mm)indiametercoredfromaSuperpavegyratory-compactedFAMspecimenweretestedusingatorsionbarfixtureinaDSR.PreliminarytestingofFAMmixespreparedwithmaterialspassingthe#4,#8,or#16(4.75mm,2.36mm,or1.18mm)sievesindicatedthatthisapproachisrepeatableandreproducible,andproducesrepresentativeresultsforcharacterizingtheperformancerelatedpropertiesofcompositebinderatbinderreplacementratesupto40percentandpossiblyhigher.Useofmaterialspassingthe#8sieve(2.36mm)isrecommended.

• TheeffectofRAPinincreasingthestiffnessofblendedbinderswasdependentprimarilyontheasphaltbindergradeand,toalesserextent,bythesourceofasphaltbinder.

• Statisticalanalysesofthetestresultsindicatedthatasphaltbindergradeandsource,RAPandRAScontent,andrejuvenatingagentallhadasignificantinfluenceonFAMmixstiffness,asexpected.

• TheFAMmixescontainingRASshowedsimilarstiffnessestothecorrespondingcontrolmixes(i.e.,containingnoreclaimedmaterials),suggestingthattheRASbinderdidnoteffectivelyblendwiththevirginbinderatthetemperaturesandmixingdurationsusedinthisstudy.

• TheinfluenceofrejuvenatingagentonreducingtheblendedbinderandFAMmixstiffnesseswasevident.Additionaltesting(beyondthescopeofthisstudy)isrequiredto

38

evaluatethelong-termbehaviorofmixesproducedwithrejuvenatingagentstodeterminewhetherthebenefitsarelimitedtoproductionandearlylife,orwhethertheyextendthroughthedesignlifeofthelayer.

• ReasonablecorrelationswereobservedbetweenthestiffnessesofasphaltbinderandthestiffnessesofFAMmixesattestingfrequenciesrangingfrom0.1Hzto10Hz.DiscrepanciesbetweenthetwomeasuredstiffnessesmaybeanindicationthatcompleteblendingofthevirginandreclaimedasphaltbinderswasnotachievedintheFAMmix,butwasforcedduringthechemicalextractionandrecovery.Thiswarrantsfurtherinvestigation.

Basedonthefindingsfromthisstudy,FAMmixtestingisconsideredtobeapotentialappropriateprocedureforevaluatingthepropertiesofblendedasphaltbinderinmixescontainingrelativelyhighquantitiesofRAPandRAS.Furthertestingonawiderrangeofasphaltbindergrades,asphaltbindersources,andRAPandRASsourcesisrecommendedtoconfirmthisconclusionandtodevelopmodelsforrelatingbinderpropertiesdeterminedfromFAMmixtestingtothosedeterminedfromconventionalperformancegradetesting.Chemicalanalysesofblendedbindersmayprovideadditionalinsightsforinterpretingtestresultsandwarrantsfurtherinvestigation.

39

References

1. COPELAND,A.2011.ReclaimedAsphaltPavementinAsphaltMixtures:StateofthePractice.FederalHighwayAdministration(ReportNo.FHWA-HRT-11-021).

2. ZHOU,F.,Li,H.,Hu,S.,Button,J.W.,andEpps,J.A.2013.CharacterizationandTestingofRecycledAsphaltShinglesinHot-MixAsphalt.TexasA&MTransportationInstituteandFederalHighwayAdministration(ReportNo.0-6614-2).

3. ROBERTSON,R.E.1991.ChemicalPropertiesofAsphaltsandtheirRelationshiptoPavementPerformance.Washington,DC:StrategicHighwayResearchProgram,TransportationResearchBoard(SHRP-A/UWP-91-510).

4. LOEBAR,L.,Muller,G.,Morel,J.,andSutton,O.1998.BitumeninColloidScience:aChemical,Structural,andRheologicalApproach.Fuel,Vol.77(13)(pp.1443-50).

5. CORBETT,L.W.1970.RelationshipbetweenCompositionandPhysicalPropertiesofAsphaltandDiscussion.JournaloftheAssociationofAsphaltPavementTechnologists,Vol.39(pp.481-491).

6. McDANIEL,R.S.,Soleymani,H.,Anderson,M.,Turner,P.andPeterson,R.2010.RecommendedUseofReclaimedAsphaltPavementintheSuperpaveMixDesignMethod.Washington,DC:NationalCooperativeHighwayResearchProgram,TransportationResearchBoard(FinalReportProjectD9-12).

7. HAJJ,E.Y.,LoríaSalazar,L.G.andSebaaly,P.E.2013.MethodologiesforEstimatingEffectivePerformanceGradeofAsphaltBindersinMixeswithHighRecycledAsphaltPavementContent,CaseStudy.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2294.Washington,DC:TransportationResearchBoard(pp.53-63).

8. MASAD,E.A.,Corey,Z.,Rifat,B.,Little,D.N.andLytton,R.L.2006.CharacterizationofHMAMoistureDamageUsingSurfaceEnergyandFractureProperties.JournaloftheAssociationofAsphaltPavementTechnologists,Vol.75(pp.713-754).

9. SOUCA,P.C.2010.AutomatedProtocolforAnalysisofDynamicMechanicalAnalyzerDatafromFineAggregateAsphaltMixes.M.Sc.Thesis.TexasA&MUniversity.

10. CARO,S.,Sáncheza,D.B.andCaicedoa,B.2014.MethodologytoCharacterizeNon-StandardAsphaltMaterialsUsingDMATesting:ApplicationtoNaturalAsphaltMixes.InternationalJournalofPavementEngineering,Vol.16(1)(pp.1-10).

11. PETERSONJ.C.1984.ChemicalCompositionofAsphaltRelatedtoAsphaltDurability:StateoftheArt.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.999.Washington,DC:TransportationResearchBoard.

12. STROUP-GARDINER,M.2000.UseofNormalPropylBromideSolventsforExtractionandRecoveryofAsphaltsCements.Auburn,AL:NationalCenterforAsphaltTechnology(NCAT)(Report00-06).

13. COPELAND,A.2009.ReclaimedAsphaltPavementinAsphaltMixes:State-of-the-Practice.Washington,DC:FederalHighwayAdministration.

14. CIPIONE,C.A.,Davison,R.R.,Burr,B.L.,Glover,C.J.andBullin,J.A.1991.EvaluationofSolventsforExtractionofResidualAsphaltfromAggregates.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.1323.Washington,DC:TransportationResearchBoard(pp.47–52).

40

15. UserGuidelineforWasteandByproductMaterialsinPavementConstruction.1997.Washington,DC:FederalHighwayAdministration(FHWA)(FHWA-RD-97-148).

16. ABBAS,A.R.,Mannan,U.A.andDessouky,S.2013.EffectofRecycledAsphaltShinglesonPhysicalandChemicalPropertiesofVirginAsphaltBinders.ConstructionandBuildingMaterials,Vol.45(pp.162-172).

17. MOGAWER,W.,Beneert,T.,Daniel,J.S.,BonaquistR.,Austerman,A.andBoosherhrian,A.2012.PerformanceCharacteristicsofPlantProducedHighRAPMixes.RoadMaterialsandPavementDesign,Vol.13.TaylorandFrancis(pp.183-208).

18. McDANIEL,R.S.,Shah.A.,Huber,G.A.andCopeland,A.2013.EffectsofReclaimedAsphaltPavementContentandVirginBinderGradeonPropertiesofPlantProducedMixes.RoadMaterialsandPavementDesign,Vol.13.TaylorandFrancis.(pp.161-182).

19. WILLIS,J.R.,Turner,P.,Julian,G.,Taylor,A.J.,Tran,N.andPadula,F.G.2012.EffectsofChangingVirginBinderGradeandContentonRAPMixProperties.Auburn,AL:NationalCenterforAsphaltTechnology.

20. McDANIEL,R.,Soleymani,H.andShah,A.2002.UseofReclaimedAsphaltPavement(RAP)UnderSuperpaveSpecifications.Washington,DC:FederalHighwayAdministration(FHWA/IN/JTRP-2002/6).

21. SOLEYMANIH.,Bahia,H.Y.andBergan,A.T.1999.BlendingChartsBasedonPerformance-GradedAsphaltBinderSpecification.TransportationResearchRecord,JournalofTransportationResearchBoard,No.1661.Washington,DC:TransportationResearchBoard(pp.7-14).

22. SHIRONDKAR,P.,Mehta,Y.,Nolan,A.,Dubois,E.,Reger,D.andMcCarthy,L.2013.DevelopmentofBlendingChartsforDifferentDegreeofBlendingBetweenRAPBinderandVirginBinder.Resources,Conservation,andRecycling,Vol.73(pp.156-161).

23. HUSSAIN,A.andYanjun,Q.2013.EffectofReclaimedAsphaltPavementonthePropertiesofAsphaltBinder.Proceedings2ndInternationalConferenceonRehabilitationandMaintenanceinCivilEngineering,ProcediaEngineering(pp.840-850).

24. JAMSHIDI,A.,Hamzeh.M.O.andShahadan,Z.2012.SelectionofReclaimedAsphaltPavementSourceandContentsforAsphaltMixProductionBasedonAsphaltBinderRheologicalProperties,FuelRequirementsandGreenhouseGasEmissions.JournalofCleanerProduction,Vol.23(pp.20-27).

25. BURRB.L.,DavisonR.R.,JemisonH.B.,GloverC.J.andBullinJ.A.1991.AsphaltHardeninginExtractionSolvents.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.1323.Washington,DC:TransportationResearchBoard.

26. BOWERS,B.F.,Huang,B.andShu,X.2014.RefiningLaboratoryProcedureforArtificialRAP:AComparativeStudy.ConstructionandBuildingMaterials,Vol.52(pp.385-390).

27. YAR,F.,Sefidmazgi,N.andBahia,H.U.2014.ApplicationofDiffusionMechanism:DegreeofBlendingBetweenFreshandRecycledAsphaltPavementBinderinDynamicShearRheometer.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2444.Washington,DC:TransportationResearchBoard(pp.71-77).

28. MA,T.,Mahmoud,E.andBahia,E.U.2010.EstimationofReclaimedAsphaltPavementBinderLowTemperaturePropertieswithoutExtraction:DevelopmentofTestingProcedure.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2179.Washington,DC:TransportationResearchBoard(pp.58-65).

41

29. SWIERTZ,D.,Mahmoud,E.andBahia,H.U.2011.EstimatingtheEffectofRecycledAsphaltPavementsandAsphaltShinglesonFreshBinder:LowTemperaturePropertieswithoutExtractionandRecovery.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2208.Washington,DC:TransportationResearchBoard(pp.48-55).

30. KANAAN,A.,Ozer,H.andAl-Qadi,I.D.2014.TestingofFineAsphaltMixturestoQuantifyEffectivenessofAsphaltBinderReplacementUsingRecycledShingles.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2445.Washington,DC:TransportationResearchBoard.(pp.103-112).

31. KRIZ,P.,Grant,D.L.,Veloza,B.A.,Gale,M.J.,Blahey,A.G.,Brownie,J.H.,Shirts,R.D.andMaccarrone,S.2014.BlendingandDiffusionofReclaimedAsphaltPavementandVirginAsphaltBinders.RoadMaterialsandPavementDesign,Vol.15.(pp.78-112).

32. PETERSON,G.D.,Davison,R.R.,Glover,C.J.andBullin,J.A.1994.EffectofCompositiononAsphaltRecyclingAgentPerformance.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.1436.Washington,DC:TransportationResearchBoard(pp.38-46).

33. COLLINS-GARCIA,H.,Mang,T.,Roque,R.andChoubane,B.2000.AnEvaluationofAlternativeSolventforExtractionofAsphalttoReduceHealthandEnvironmentalHazards.ProceedingsTransportationResearchBoardAnnualMeeting.Washington,DC.

34. ZHOU,F.,Li,H.,Lee,R.,Scullion,T.andClaros,G.2013.RecycledAsphaltShingleBinderCharacterizationandBlendingwithVirginBinders.TransportationResearchRecord,JournaloftheTransportationResearchBoard,No.2370.Washington,DC:TransportationResearchBoard(pp.33-43).

35. ALAVI,M.Z.,He,Y.andJones,D.2014.InvestigationoftheEffectofReclaimedAsphaltPavementandReclaimedAsphaltShinglesonthePerformancePropertiesofAsphaltBinders:InterimReport.DavisandBerkeley,CA:UniversityofCaliforniaPavementResearchCenter(UCPRC-TM-2014-06).

36. PROWELL,B.2014.GoodPerformingRAP/RASMixes.www.alasphalt.com/files/AAPARAPRAS2014Presentation.pdf(Accessed09/15/2014).

top related