effect of pegylated gold nanoparticle core size on cancer cell uptake

Post on 19-Feb-2016

29 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Effect of pegylated gold nanoparticle core size on cancer cell uptake. By Charmainne Cruje Ryerson University Supervised by Dr. Devika B. Chithrani. Radiation Therapy Cancer Treatment. Target organs versus organs at risk Set dose limits Software optimization. - PowerPoint PPT Presentation

TRANSCRIPT

Effect of pegylated gold nanoparticlecore size on cancer cell uptake

By Charmainne CrujeRyerson University

Supervised by Dr. Devika B. Chithrani

2

Target Organ and Healthy Organs

Radiation Therapy Cancer Treatment• Target organs versus organs at

risk• Set dose limits• Software optimization

Radiation Cell Killing Processe-

H2O H2O+

H2O

H3O+

OH•

3

Gold Nanoparticles (NPs) as Radiosensitizers

1aButterworth KT, McMahon SJ, Taggart LE, Prise KM, Radiosensitization by Gold Nanoparticles: Effective at Megavoltage Energies and Potential Role of Oxidative Stress, Transl. Cancer Res., 2013;2(4):269-279.1bChithrani DB, Jelveh S, Jalali F, Van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA, Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy, Radiat Res, 2010;173:719-728.

0 2 4 6 810-3

10-2

10-1

100

No NPs 50 nm 74 nm 14 nm

Sur

viva

l fra

ctio

n

Dose (Grays)

1a

Radiation Therapy and Gold NP Treatment of

Cultured Cervical Cancer Cells1b

4

Advantages of Gold NPsEase of SynthesisIdeal Model Nanoparticle System to Improve Bio-Nano Interface

Biocompatibility2

GoldNPs

Ease of DesignConjugation

• Immune system cells in vitro

• 3.5 ± 0.7 nm Gold NPs

GNP concentration

2Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir : The ACS Journal of Surfaces and Colloids, 21(23), 10644-10654.

5

Polyethylene glycol (PEG)

Increases blood circulation time

NP corePEG coat

O

HHO

n

3Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011;6(4):715-728.

6

Objective• To determine the cellular uptake of

gold NPs and PEG-coated ones (2000 Da)

14 nm

Gold NP

PEG-Gold NP

14 nm

Cervical

Cancer Cells

Breast Cancer Cells

50 nm 50 nm

7

Characterization

14 nm

50 nm

8

Cellular uptake results

14 nm 50 nm1150

1250

1350

1450

Cervical Cancer Cells

Gold NP PEG-Gold NP

Diameter

NPs

per

cel

l

26%29%

14 nm 50 nm

Breast Cancer Cells

Diameter

20%3%

9

15 μm

PEG-Gold NP

Gold NP

0 2000 4000 6000NPs per cell

Darkfield images of 14 nm Gold NPs

Cervical Cancer Cells

Breast Cancer Cells

10

Conclusion• Uptake of PEG-Gold NP is size

dependent and cell type dependent.• In cervical cancer cells, PEG-Gold NP

uptake is reduced to 26%.• In breast cancer cells, PEG-Gold NP

uptake is reduced to 20%.• There is a need to enhance the uptake

of PEG-Gold NPs.

11

ReferencesCheng, Y., C Samia, A., Meyers, J. D., Panagopoulos, I., Fei, B., & Burda, C.

(2008). Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. Journal of the American Chemical Society, 130(32), 10643-10647.

Chithrani, B. D., & Chan, W. C. (2007). Nano Letters, 7(6), 1542-1550. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the

size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662-668.

Chithrani DB, Jelveh S, Jalali F, Van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA, Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy, Radiat Res, 2010;173:719-728.

Cho, W. S., Cho, M., Jeong, J., Choi, M., Han, B. S., Shin, H. S., et al. (2010). Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicology and Applied Pharmacology, 245(1), 116-123.

Ding, Y., Zhou, Y. Y., Chen, H., Geng, D. D., Wu, D. Y., Hong, J., et al. (2013). The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 34(38), 10217-10227.

Hu, Y., Xie, J., Tong, Y. W., & Wang, C. H. (2007). Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 118(1), 7-17.

Lee, S. H., Bae, K. H., Kim, S. H., Lee, K. R., & Park, T. G. (2008). Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. International Journal of Pharmaceutics, 364(1), 94-101.

12

Li, S. D., & Huang, L. (2010). Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Journal of Controlled Release : Official Journal of the Controlled Release Society, 145(3), 178-181.

Lipka, J., Semmler-Behnke, M., Sperling, R. A., Wenk, A., Takenaka, S., Schleh, C., et al. (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31(25), 6574-6581.

Liu, Y., Shipton, M. K., Ryan, J., Kaufman, E. D., Franzen, S., & Feldheim, D. L. (2007). Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Analytical Chemistry, 79(6), 2221-2229.

Jokerst, J. V., Lobovkina, T., Zare, R. N., & Gambhir, S. S. (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London, England), 6(4), 715-728.

Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647-1671.

Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir : The ACS Journal of Surfaces and Colloids, 21(23), 10644-10654.

Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. W. (2012). Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J. Am. Chem. Soc., 134 (4), 2139–2147.

13

Supplementary 1: Drug delivery via PEGylated GNPs

• Lower tumor volume and mass with PEG-GNP conjugation6

• Longer drug circulation time of conjugates

Group a – no PTX, group b – PTX, group c – PTX-PEG-GNPs

no PTX

PTX

PTX-PEG-GNP

6Ding Y, Zhou YY, Chen H, et al. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials. 2013;34(38):10217-10227.

14

Supplementary 2: Circulation lifetime depends on GNP size

In vivo study by Cho et al7• Varying sizes of GNPs with 2kDa PEG• Healthy mice• Larger GNPs had longer circulation

lifetimes 7Cho, W. S., Cho, M., Jeong, J., Choi, M., Han, B. S., Shin, H. S., et al. (2010). Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicology and Applied Pharmacology, 245(1), 116-123.

15

Supplementary 3: Circulation lifetime dependson PEG chain length

Au-Phos

Au-PEG750

Au-PEG10k

PEGylated 5nm GNPs had longer circulation times with longer PEG chains8

8Lipka, J., Semmler-Behnke, M., Sperling, R. A., Wenk, A., Takenaka, S., Schleh, C., et al. (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31(25), 6574-6581.

16

RF

  - NP 

- PEG

  - PEG space

Brush Mushroom

Supplementary 4: Literature Review Queries

Surface conformation of PEG varied

Surface density of PEG varied9

9Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. W. (2012). Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J. Am. Chem. Soc., 134 (4), 2139–2147.

17

Supplementary 5: From extracellular matrix to cell

• PEGylation of GNPs reduces uptake10

spheres

rods

GNPs/cell vs. size

10Arnida, Malugin, Ghandehari, Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,Anal. Chem., 2007, 79, 2221-2229.

18

Supplementary 6: Characterization of Conjugates

450 500 550 600 650 7000

0.51

50 nm GNP

GNPPEG-GNP25%RME50%RME75%RME100%RME

Wavelength (nm)

Abso

rban

ce

450 500 550 600 650 7000

0.20.4

14 nm GNP

Wavelength (nm)

Abso

rban

ce

450 500 550 600 650 7000

0.570 nm GNP

Wavelength (nm)

Abso

rban

ce 14 nm DLS results - 17 nm hydrodynamic diameter - PEGylation adds 11 nm to diameter

19

Supplementary 7: HyperSpectral Image

for RMEp-PEG-GNPs in MDA cells

15 μm

20

Citrate PEG-GNP RME-PEG-GNP0

200400600800

100014 nm GNP uptake in MDA

GNP Type

GN

Ps p

er c

ell

Supplementary 8: Darkfield images of 14 nm gold NPs in MDA

15 μm

21

Supplementary 9: Enhanced uptake of 14 nm gold NPs in cervical cancer cells

Gold NP

PEG-Gold

NP

RME-PEG

-Gold NP

0200040006000

GNP Type

NPs

per

cel

l

15 μm

top related