ee143 s06 final exam review ee143 labee143/sp06/lectures/finalexam_review.pdf · professor n...

Post on 29-Jul-2018

248 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

EE143 LAB

1

2Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

EE143 Equipment in Cory 218

3Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Si wafer

ProcessingSteps

Guidelines for Process Integration* A sequence of Additive and Subtractive steps with lateral patterning

• Watch out for materials compatibility issues (e.g. temperature limit)• Planarity is desirable for lithography, etching, and thin-film deposition• Whenever possible, use self-aligned structures

4Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

0200400600800

100012001400

Resist

Expos

ure

Resist

Spin-on

Resist

Bak

e

Evap

oratio

n Dep

ositio

n

Sputte

ring D

epos

ition CVD

Ion Im

planta

tion

Post Im

planta

tion A

nnea

l

Therm

al Oxid

ation

Dopan

t Diffu

sion Ep

i

Pro

cess

Tem

per

atu

re in

C

ResistReflow

Al-Si Eutectic (560C)

Si MeltingPoint (1412C)

Processing Temperature and Material Failure Temperature

5Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Self-Aligned Silicide Process (SALICIDE) using Ion

Implantation and Metal-Si reaction

n+n+

TiSi2 (metal)poly-gate

*Self-aligned structures are always preferred for process integration

6Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Layout Design Rules

•Understand the meaning of the boundaries

•Use EE143 design rule values

•Actual layout may look different from conceptual layout when rule values are applied

•Change of design rules values will need understanding of device structures/technology•(qualitative)“conceptual layout”

7Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Summary : Parameters Affecting VT

6

7

n+

Na

VB

5

1

2

4

3

Dopant implant near Si/SiO2 interface

fOX Q&ρ Mφ

xox

VCQn n+

VG-VB= ΦMS+ Vox +VSi

8Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Accumulation

Depletion

Inversion

Vox = Qa/Cox

VSi ~ 0

Vox =qNaxd/Cox

VSi = qNaxd2/(2εs)

Vox = [qNaxdmax+Qn]/Cox

VSi = qNaxdmax2/(2εs)

= 2|ΦF|

Voltage drop = area under E-field curve

* For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches

9Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

+ Qf or Qox

B threshold implant

As or P threshold implant

Xox increases

Xox increases

ΦM increases

ΦM decreases

|VCB| increases

|VCB| increases

10Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

DSDS

TGOXn

D VV

VVCLW

I

−−=

For VD < VDsat

( )2

2 TGOXn

DsatD VVCLW

II −==µ

For VD > VDsat

Note: VDsat = VG - VT

MOSFET I-V Characteristics

11Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Small Signal Capacitance C ( ≡ ∆Q/∆VG)

*p-type substrateCox

12Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Typical Thin Film stress : 108 to 5x1010

dynes/cm2 (107 dyn/cm2 = 1 MPa)

Radius of Curvature of warpage

“Stoney Equation”

r = Es × ts2

( 1- ν)s × 6 ×σf ×tf

13Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

substratesubstrate

Effect of Thin-film Stress Gradient on Cantilever Deflection

substrate

z

(1) No stress gradient along z-direction

(2) Higher tensile stress near top surface of cantileverbefore release from substarte

(3) Higher compressive stress near top surface of cantileverbefore release from substrate

Cantilever

14Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

MEMS Process Flow Example:to form a hollow cantilever beam

15Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

MEMS- IC Integration

Example of MEMS-first approach

16Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Thermal Oxidation Model

CGCs

Co

Ci

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

gastransportflux

diffusionflux

through SiO2

reactionflux

at interface

NoteCs ≠ Co

NoteCs ≠ Co

17Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

CVD Deposition Rate [Grove Model]

F

F

=

=

3

1

kTE

os

G

ekk

hD

∆−=

F1 F3

Si

film

δ = thickness of stagnant layer

31 FF =

δ

D [ CG - CS] / δ

kS CS

18Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Ion Implantation

C(x)Cp

0.61 Cp

∆Rp

Rpx=0 x

( )( )( )

straggleallongitudinR

rangeprojectedReCpxC

p

p

R

Rx

p

p

=∆

=⋅= ∆

−−2

2

2

CB

xj

Implantation Damage

random scattering path

deeper penetration

Si Crystal

random scattering path

deeper penetration

Si Crystal

Ion Channeling

19Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

T(t)

time

∑=i

ieffective DtDt

BudgetThermal

)()(

welldrive-in

stepS/D

Annealstep

For a complete process flow, only those steps with high Dtvalues are important

For a complete process flow, only those steps with high Dtvalues are important

Examples: Well drive-in and S/D annealing steps

20Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

21Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

point

best

off

Depth of Focus (DOF)

22Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Worst-Case Design Considerations for Etching

step

Substrate

step heightvariation

variationof filmthicknessacross wafer

etching maskcan be eroded

duringfilm etchingMask

film

23Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

effect

Controlvariable

Effect of RIE process variables on etching characteristics

24Professor N Cheung, U.C. Berkeley

Final Exam ReviewEE143 S06

Multilevel Metallization and Planarization

top related