ece 522 power systems analysis ii 3.2 –small‐signal...

Post on 20-May-2018

226 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Spring 2018Instructor: Kai Sun

ECE 522 Power Systems Analysis II

3.2 – Small‐Signal Stability

2

Content

•3.2.1 Small‐signal stability overview and analysis methods•3.2.2 Small‐signal stability enhancement

References:– EPRI Dynamic Tutorial– Chapters 12 and 17 of Kundur’s “Power System Stability and Control”– Chapter 3 of Anderson’s “Power System Control and Stability” – Joe H. Chow, “Power System Coherency and Model Reduction,”  Springer, 2013

3

3.2.1 Small‐Signal Stability Overview and Analysis 

Methods

4

Power Oscillations

• The power system naturally enters periods of oscillation as it continually adjusts to new operating conditions or experiences other disturbances. 

• Typically, oscillations have a small amplitude and do not last long. •When the oscillation amplitude becomes large or the oscillations are sustained, a response is required: – A system operator may have the opportunity to respond and eliminate harmful oscillations or, 

– less desirably, protective relays may activate to trip system elements.

5

Small Signal Stability

• In this context, a disturbance is considered to be small if the equations that describe the resulting response of the system may be linearized for the purpose of analysis.

• It is convenient to assume that the disturbances causing the changes already disappear and details on the disturbance are unimportant

• The system is stable only if it returns to its original state, i.e. a stable equilibrium point (SEP). Thus, only the behaviors in a small neighborhood of the SEP are concerned and can be analyzed using the linear control theory.

Small signal stability (also referred to as small‐disturbance stability) is the ability of a power system to maintain synchronism when subjected to small disturbances

0

P0

P()

k∆+P0

6

Classic‐Model SMIB System

Pe+jQe

Pt+jQt

PB+jQB

(Pe=Te)

With all resistances neglected:

eSeT KT

d dd

¶D » D = D

Linearize swing equations at =0 :

Synchronizing torque coefficient:

max 0 0cos cosBS

T

E EK PX

d d¢

= =

0

2

r

rm e D r

m e D r

ddt

dH T T Kdt

T T K

dw w

ww

w

D= D

D= - - D

=D -D - D

max

max

sine e t B

B

T

T P P P PE EP

X

d= = = =¢

=

(Tm)

(Te)

KS

Sm D rT K Kd w»D - D - D

Note:

H in s

r in p.u.

in rad.

KD in p.u

KS in p.u/rad

7

• Characteristic equation:

0 0

2 2 2s mD K TK

H H H w wd d d

DD + D + D =

• Apply Laplace Transform:

2 0

0

2

12

2sD

m

Ks

THKs

H H

wd

wD

D = ´+ +

State‐space representation

2 0 02 2

sD KKs sH H

w+ + =

00 0

1 22 2

mS D

r r

TdK Kdt HH H

wd dw w

é ùé ù é ù é ùD Dê ú Dê ú ê ú ê úê ú= +ê ú ê ú ê úê úD D- - ë ûë û ë ûê úë û

8

• It has two conjugate complex roots and its zero-input response is a damped sinusoidal oscillation:

• :2

1 2, 1n ns s j js w zw w z= =- -

A harmonic oscillator

2 22 0n ns szw w+ + = – Damping ratio

n – Natural frequency

2

( ) sin( )

sin( 1 )n

t

tn

x t Ae t

Ae t

s

zw

w j

w z j-

= +

= - +

11/n

The time of decaying to 1/e=36.8%:

s1

s2

0 0

(if 0 )2m

Ds TKH K d d d

w w- D D- D =D =

2 0 02 2

sD KKs sH H

w+ + =2 0D Ks s

M M+ + =

F M x K x D x = ⋅ =- ⋅ - ⋅

9

Oscillation Frequency and Damping of an SMIB System

• How do n and change with the following?– if H (lower inertia)– if XT (stronger transmission)– if (lower loading)

2 22 0n ns szw w+ + =

2 2 0 0 0cos2 2

Bn S

T

E EKH HXw w d

w s w¢

= + = =

2 20 00

12 8 cos2

D TD

BS

K XKHE EK H

sz

w dws w

-= = =

¢+ 4D

nKH

s zw=- =-

22 0

212 16

Dn S

KKH Hw

w w z= - = -

21 2, 1n ns s j js w zw w z= =- -

0 max 0( cos cos )BS

T

E EK PX

d d¢

= =

Note the units:

r is in p.u.

is in rad.

KD is in p.u

KS is in p.u/rad

2 0 02 2

sD KKs sH H

w+ + =

10

System Response after a Small Disturbance

2 0/rx w d w=D =D1x d=D

1 102

02 2

0 0

2 1n n

x xu

x x

ww w zw

é ù é ùé ù é ùê ú ê úê ú ê ú= + Dê ú ê úê ú ê ú- - ë ûë ûë û ë û

( ) ( ) ( )t t u t x Ax B

1

2

1 0( ) ( )

0 1x

t tx

y Cxé ùé ùê úê ú= = ê úê úë û ë û

( ) (0) ( ) ( )s s s U s X x AX B

2mTu

HD

D =

( ) uU ss

DD =

[ ]

02

02 2

2

( ) (0) ( )2

n

n

n n

ss

s U ss s

X x B+

zw ww w

zw w

é ù+ê úê ú-ë û= D+ +

02

02 2

20( ) (0)

( )( ) (0)2

n

n

r rn n

ss s

us s ss

zw wd dw ww wzw w

é ù+ê ú é ùê úé ù é ùD D- ê úë ûê ú ê ú ê ú= + Dê ú ê ú ê úD D+ +ë û ë û ê úë û

Zero-input Zero-state

1( ) ( ) ( ) (0) ( )s s s U s Y X I A x B+

Zero-input Zero-state

00 0

1 22 2

mS D

r r

TdK Kdt HH H

wd dw w

é ùé ù é ù é ùD Dê ú Dê ú ê ú ê úê ú= +ê ú ê ú ê úê úD D- - ë ûë û ë ûê úë û

(Assuming the angle and speed to be directly measured)

Apply Laplace transform:

11

Zero‐input response

2

(0) sin( )1

in rad nte tzwdw q

zd -D

D= +

-

2

(0 in rad/s ) sin1

nr

tn e tzww

zw

dw-D

=--

D

1cos

• E.g. when the rotor is suddenly perturbed by a small angle (0)0 and assume r (0)=0

2 2

( 2 ) (0)( )2

n

n n

sss s

zw dd

zw w+ D

D =+ +

02

02 2

20( ) (0)/

( )( ) (0)2

n

n

r rn n

ss s

us s ss

zw wd dw ww wzw w

é ù+ê ú é ùê úé ù é ùD D- ê úë ûê ú ê ú ê ú= + Dê ú ê ú ê úD D+ +ë û ë û ê úë û

2 2( )2r

n n

uss s

Zero‐state response• E.g. when there is a small increase in

mechanical torque Tm (= Pm in pu)

02 2

11 sinin2 1

rad ntm

n

T e tH

02

sin in ra s2

d1

/ ntmr

n

T e tH

Inverse Laplace transform

pu2

mTuH

DD =

0 0 0/ ( ) / in pu r rw d w w w wD =D = -

20

2 2

(0) /( )2

nr

n n

ss sw d w

wzw w

DD =-

+ +

02 2( )

( 2 )n n

uss s s

Damping angle:

12

Example• Exp. 11.2 & 11.3 in Saadat’s book• H=9.94s, KD=0.138pu, Tm=0.6 pu with PF=0.8.

Find the responses of the rotor angle and frequency under these disturbances

(1) (0)=10o=0.1745 rad(2) Pe=0.2pu

(0)=16.79+10=26.79o ()=16.79+5.76=22.55o

Zero‐input response: (0)=10o Zero‐state response: Pe=0.2pu

13

Small‐Signal Stability of a Multi‐machine SystemInter‐area or intra‐area modes (0.1‐0.7Hz): machines in one part of the system swing against machines in other parts

Inter‐area model (0.1‐0.3Hz): involving all the generators in the system; the system is essentially split into two parts, with generators in one part swinging against machines in the other parts.

Intra‐area mode (0.4‐0.7Hz): involving subgroups of generators swinging against each other.

Local modes (0.7‐2Hz): oscillations involve a small part of the system

Local plant modes: associated with rotor angle oscillations of a single generator or a single plant against the rest of the system; similar to the single‐machine‐infinite bus system

Inter‐machine or interplant modes: associated with oscillations between the rotors of a few generators close to each other

Control or torsional modes (2Hz – )

Due to inadequate tuning of the control systems, e.g. generator excitation systems,  HVDC converters and SVCs, or torsional interaction (sub‐synchronous resonance) with power system control

14

High & Low Frequency Oscillations•Whenever power flows, I2R losses occur. These energy losses help to reduce the amplitude of the oscillation. 

• High frequency (>1.0 HZ) oscillations are damped more rapidly than low frequency (<1.0 HZ) oscillations. The higher the frequency of the oscillation, the faster it is damped. 

• Power system operators do not want any oscillations. However, when oscillations occur, it is better to have high frequency oscillations than low frequency oscillations. 

• The power system can naturally dampen high frequency oscillations. Low frequency oscillations are more damaging to the power system, which may exist for a long time, become sustained (undamped) oscillations, and even trigger protective relays to trip elements

15

11,600 MW loss

15,820MW loss

2,100 MW loss

970 MW lossBlackout on August 10, 19961. Initial event (15:42:03):

Short circuit due to tree contact Outages of 6 transformers and lines

2. Vulnerable conditions (minutes)Low‐damped inter‐area oscillationsOutages of generators and tie‐lines

3. Blackouts (seconds)Unintentional separation Loss of 24% load

200 300 400 500 600 700 8001100

1200

1300

1400

1500

Malin-Round Mountain #1 MW

Time in Seconds

0.264 Hz oscillationdamping ratio =3.46%

0.252 Hz oscillation

damping ratio 1%

0.276 Hzoscillation

damping ratio >7%

15:42:03 15:48:5115:47:36

Transient instability (blackouts)

16

Oscillation Modes of a Multi‐machine System in the Classic Model

2 2 2

1 1 1

cos sin cos

, sin , cos

n n n

ei i ii ij i ii i j ij ij ij i ii i j ij ij ij ijj j jj i j i j i

ij i j ij ij ij ij ij ij

P E G P E G E E Y E G E E B G

B Y G Y

0

0 0

0 0

sin sin cos

cos cos sin

ij ij ij

ij ij ij ij

ij ij ij ij

Linearization at ij0:

2

20

2 1, 2, ,i imi ei

H d P P i ndt

2

210

2

210

0 0

2 0 1, 2, ,

2 0 co sin s

sij

i j ij ij ij

ni i

ijjj i

ni i

i ijjj i

j

H d i ndt

H

K

E E B Gddt

Synchronizing power coefficient

(Ignoring damping)

0compared to cosBS

T

E EKX

= 0

0 0 = cos sinij

ijsij i j ij ij ij ij

ij

PK E E B G

17

2

210

2 0 1, 2, ,n

i isij ij

jj i

H d K i ndt

Note: There are only (n−1) independent equations because ij=0, so we need to formulate the (n−1) independent relative rotor angle equations with one reference machine, e.g., the n-th machine.

2 10 0 0 0

21 1

0, 1, , 12 2 2 2

n nin

sij sni in snj sij jnj ji n n ij i j i

d K K K K i ndt H H H H

2 1

21

0 0 0 0

1

0 1, 2, , 1

2 2 2 2

nin

ij jnj

n

ii sij sni ij snj sijji n n ij i

d i ndt

K K K KH H H H

2 1

2

20

1 12 0, 1, ,

2 21

ni

sij ijjij i

nn R

snj njjn

d Kdt

d K nd H H

it

Consider each in=i-n

18

State‐space representation

1 2 1 1 2 1

1 2 2 1 2 1

Let , , , , , , and

, , , , , ,

n n n n n

n n n n n n n

x x x

x x x

1 1

2 2

1 1

11 12 1 1

21 22 2 11 1

2 2 2 21 1 1 2 1 1

1 0 00 1 0

0 0 1n n

nn n

nn n

n nn n n n

x xx x

x xx x

x x

x x

0

0

1

2

0 IXA 0X

• Its characteristic equation |2I-A|=0 has 2(n-1) imaginary roots, which occur in (n-1) complex conjugate pairs

• An n-machine system has (n-1) modes

Read Anderson’s Examples 3.2 and 3.3 about the linearization and eigen-analysis on the IEEE 9-bus system

19

Formulation of General Multi‐machine State Equations• The linearized model of each dynamic

device:

xi – Perturbed values of state variablesii – Current injection into network from the devicev – Vector of network bus voltages

Bi and Yi have non-zero element corresponding only to the terminal voltage of the device and any remote bus voltages used to control the device

ii and v both have real and imaginary components

i i i i

i i i i

x A x B v

i C x Y v

• Such state equations for all the dynamic devices in the system may be combined into the form:

x is the vector of state variables of the complete systemAD and CD are block diagonal matrices composed of Ai and Ci associated with the individual devices

• Node equation of the transmission network:i = YNv

• The overall system state equation:

• Read Kundur’s sec. 12.7 for other related information, e.g. load model linearization and selection of a reference rotor angle

D D

D D

x A x B v

i C x Y v

1D D N D D

1D D N D D

( ) =

( )

x A x B Y Y C x Ax

A A B Y Y C

20

Modal analysis (eigen‐analysis) on an n‐dimensional nonlinear system

Linearization at the equilibrium x0: consider a perturbation at x0 and u0

Equilibrium x0 (with u0):

21

Eigen‐vectors

1 2

Similarly the row vector

Left eigenvector associated with

, , ,

j

j j j j

TT T Tn

λ

ψ

A

Ψ

The left and right eigenvectors corresponding to different eigenvalues are orthogonal(row vectors of -1 are left eigenvectors of A, so we may let = C -1

where C is a diagonal matrix or simply equal to I if normalized)

(usually true for a real-world system)

For any , the column vector satisfying is called a right eigenvector of associated with

i i i i i

i

λ λλ

AA

1 2

1 21

, , , ( , ,

Modal , )

if has distinct eigenvalues

matrix n

ndiag λ λ λ

ΦAΦ ΦΛ Λ

Φ AΦ Λ A

0 if , or 1j i i ii j ΨΦ I

22

Free (zero‐input) response and stability Linearized system without external forcing x A x

• To eliminate the cross-coupling between the state variables, consider a new state vector z

iti i i i i

1

z z z t z 0 e

=

z Λz Φ AΦz Φz AΦz

i

1

n2 t

1 2 n i ii 1

n

z tz t

(t) (t) z 0 e

z t

x Φz

Free response is a linear combination of n modes

1

i i i

t t t

z 0 0 c

z Φ x Ψ x

x

i i

n nt t

i i i ii 1 i 1

t 0 e c ex x

i 1 n

nt t t

k ki i k1 1 kn ni 1

x ( t ) c e c e ... c e

(ci is the magnitude of the excitation of the ith mode)

• Each eigenvalue = j– A real eigenvalue (=0) corresponds to a non-oscillatory mode.

• a decaying mode has <0; a mode with >0 has aperiodic instability.– Complex eigenvalues (0) occur in conjugate pairs; each pair corresponds

to one oscillatory mode• Frequency of oscillation in Hz: f= /2• Damping ratio (rate of decay) of the oscillation amplitude

2 2

23

Mode Shape and Mode Composition

• The variables x1, x2, …, xn are original state variables chosen to represent the dynamic performance of the system.

• Variables z1, z2, …, zn are transformed state variables; each is associated with only one mode. In other words, they are directly related to the modes.

• The right eigenvector i gives the mode shape of the ith mode, i.e. the relative activity of the original state variables when the ith mode is excited: The kth

element of i , i.e. ki , measures the activity of state variable xk in the ith mode

• The left eigenvector i gives the mode composition of the ith mode, i.e. what weighted composition of original state variables is needed to construct the mode: The kth element of i , i.e. ik, weights the contribution of xk’s activity to the ith mode

T1 2 n 1 2 nt t z (t), z (t),..., z (t) x Φz

T TT T T1 2 n 1 2 nt t , , , x (t), x (t),..., x (t) z Ψ x

n

k k i ii 1

x ( t ) z t

n

i ik kk 1

z ( t ) x ( t )

24

Participation factor

n n

ik ki ikiik 1 k 1

1 p

ΨΦ I ΨΦ

• ki measures the activity of xk in the ith mode

• ik weights the contribution of this activity to the mode

• Participation factor pki= ikki measures the participation of the kth state variable xk in the ith mode.

• pki is dimensionless and hence invariant under changes of scale on the variables

• Question: considering =-1, why do we have to define the mode shape, mode composition, and participation factors, separately?

Learn Kundur’s Example 12.2 on a SMIB system

top related