ear the nasa–esa mission lisa will measure gravitational ...s ! ear e i e offie y g oct 2020*:...

Post on 24-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LISA’s !rst yearPromises and Challenges of LISA ScienceMichele Vallisnerifor the LISA Mission Science OfficeJet Propulsion Laboratorylisa.nasa.gov www.lisascience.org

Oct 2020*: launch!

Jan 2022: acquire & calibrate

cruise (14 months)

1 Apr 2022: begin science operation end year 1 (four more years!)

Massive black-hole binaries• study the galaxy-MBH coevolution• measure accurate distances of high-z

objects to determine cosmology• test GR in the nonlinear regime

Challenge: produce accurate, efficient inspiral–merger–ringdown templates

National Space and Aeronautics Administration

The NASA–ESA mission LISA will measure gravitational waves with frequencies of 0.1 mHz–0.1 Hz. LISA sources include massive-BH mergers, the inspirals of compact objects into central galactic BHs, the binaries of compact stars in our Galaxy, and possibly GW relics from the Big Bang.

The three LISA spacecraft orbit the Sun in a 5-million-km triangular formation. LISA measures GWs using laser interferometry to monitor the distance !uctuations between freely falling test masses, which are protected from external disturbances by the drag-free control of the spacecraft.

day 1–day 365: 23,000 detections of known and and unknown Galactic binaries

RX J0

806.3

HP

Lib

AM C

Vn

EI P

sc

V803

Cen

V407

Vul

ES C

et

������ ���������� �� �� ���� ������ ���� ���������� ������������������ ���� ���� �� �� ������������ �� �� �� ���� �� �� �� ������ �� �� ���� ��

at least 6 known AM CVn’s and one cataclysmic variable

150

59 previously undetected mass-transferring systems; 248 after Galactic foreground subtraction

9,816 previously undetected detached systems (173 on day 1); 22,643 after foreground subtraction

day 10–day 365: 122 detections of extreme mass-ratio inspirals

day 2–day 363: 39 detections of massive and intermediate-mass black-hole binary coalescences

z�0

z�15

�1�106�5�

104 �M �

,z�2.,SNR�190

�4�105�1�

104 �M �

,z�4.6,SN

R�125

�2�104�8�

103 �M �

,z�6.9,SN

R�134

�1�104�1�

103 �M �

,z�9.1,SN

R�40

�4�103�5�

102 �M �

,z�8.1,SN

R�21

�5�103�2�

102 �M �

,z�3.9,SN

R�12

�1�103�4�

102 �M �

,z�12.,SN

R�10

�2�103�2�

103 �M �

,z�15.,SN

R�21

�2�104�9�

103 �M �

,z�5.7,SN

R�184

�4�104�1�

103 �M �

,z�5.,SNR�88

�3�107�3�

105 �M �

,z�1.,SNR�103

�2�105�1�

104 �M �

,z�1.7,SN

R�742

�2�104�5�

103 �M �

,z�2.7,SN

R�188

�2�103�1�

103 �M �

,z�10.,SN

R�23

�1�103�5�

102 �M �

,z�9.7,SN

R�13

�2�103�5�

102 �M �

,z�5.1,SN

R�19

�3�106�5�

103 �M �

,z�1.6,SN

R�52

�1�104�1�

104 �M �

,z�8.7,SN

R�122

�8�104�3�

103 �M �

,z�9.,SNR�114

�2�104�2�

102 �M �

,z�8.6,SN

R�19

�1�103�4�

102 �M �

,z�8.7,SN

R�11

�2�104�1�

104 �M �

,z�7.9,SN

R�167

�3�103�5�

102 �M �

,z�11.,SN

R�17

�3�105�1�

103 �M �

,z�5.1,SN

R�55

�2�103�9�

102 �M �

,z�12.,SN

R�18

�8�104�5�

104 �M �

,z�4.2,SN

R�601

�5�103�2�

103 �M �

,z�7.8,SN

R�41

�1�106�6�

103 �M �

,z�7.1,SN

R�16

�1�105�5�

103 �M �

,z�6.1,SN

R�189

�7�103�5�

103 �M �

,z�6.1,SN

R�87

�1�105�9�

102 �M �

,z�9.9,SN

R�37

�6�103�1�

103 �M �

,z�9.3,SN

R�34

�8�104�5�

103 �M �

,z�4.6,SN

R�222

�5�105�2�

104 �M �

,z�1.1,SN

R�1234

�9�104�5�

104 �M �

,z�7.2,SN

R�369

�1�104�8�

102 �M �

,z�9.2,SN

R�36

�5�104�2�

102 �M �

,z�7.6,SN

R�26

�7�103�2�

102 �M �

,z�12.,SN

R�12

�1�103�8�

102 �M �

,z�12.,SN

R�15

dots show merger events;lines begin at confirmedinspiral detections30% systems are located to 10 deg2 and 10% DL

results for merger-tree population with light seeds and efficientaccretion fromArun et al. (2009)

results for SDSS-calibrated Galactic binary population with He-starmass-transferring systems fromNissanke et al. (2011)detected sources are subtractedfrom the dataset, resulting ina much lower confusion foreground

several more known systems have uncertain GW luminosities or will be detected in the next four years

Galactic binaries• study the astrophysics of binary

stellar evolution, including the common envelope phase

Challenge: design the probabilisticrepresentation and querying of the source catalog

Extreme mass-ratio inspirals• study MBHs and their environment

in the dense nuclei of galaxies• map BH spacetimes, test no-hair

theorem and cosmic censorship

Challenge: develop accurate and efficient signal templates

Cosmic-string bursts and stochastic backgrounds• look for new physics from

the early Universe and string theory

Challenge: characterize space of models and theories

�� �� �� �� �� ���� ���� �� ���� �� �� ���

��� �� �������

������� �������������� �

���� �� ���

� ���� ���� �� ���� �� ����

�������������

�����

���������� �� �

��� ����

���������� ��

������������

������ ����

����

���� ��������

���� ���

� �� ���� ��

������ ��

���� �

�����

������

������

���������

� �������� �� �������� �

������

–5 –4 –3 –2 –1 0

–20

–19

–18

–17

–24

–23

–22

–21

–20–16

–19–15

veri!cationbinaries

galactic binaryforeground

106+106 M BH–BH at z=1(last 3 years)

log10 f/Hz

LISA sensitivity to monochrom

atic sources(strain needed for SNR=1 in 1 yr ): log

10 hLISA

inst

rum

ent n

oise

: log

10 "

S n /Hz–1

/2

105+105 M BH–BH at z=1(last 3 years)

instrumentnoise

best estimatefor LISA Path!nder

10+106 M EMRI at 3 Gpc(last 3 years)

the LISA sensitivity

z�0

z�1

histogram of detections/day

detection rate out to z = 1 from LISAscience requirement document (2010)

10!42

10!40

10!38

10!36

10!34 !resolved systems: detached mass-transferring

10!4 10!3 10!2inst

rum

ent &

con

fusio

n no

ise:

S n [Hz–1

]

f [Hz]

confusion foreground: unsubtracted subtracted

instrument noise

top related