développement "in silico" de nouveaux extractants et complexants de métaux alexandre...

Post on 02-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Développement "IN SILICO" de nouveaux extractants et complexants

de métaux

Alexandre Varnek Laboratoire d’Infochimie,

Université Louis Pasteur, Strasbourg, FRANCE

- Acquisition of Data;

- Acquisition of Knowledge;

- Exploitation of Knowledge

« In silico » design of new complexants (extractants)

« In silico » design of new compounds

Combinatorial module

Models « structure-activity »

Database

QSPR module

Clustering module

Knowledge base

Screening

Hits

EXPERIMENT

I S I D AIn SIlico Design and data Analysis

QSPR module

Database

Clustering module

Knowledge base

Supplementary tools

Combinatorial module

•Expert System

Acquisition of Knowledge:

• establishes reliable quantitative structure–property relationships

• must be very fast to analyse data sets of 104-106 compounds

•Expert System

Acquisition of Knowledge:

QSPR module

Clustering module

Knowledge base

Quantitative Structure Activity Relationship (QSAR)

O

4

P O

O

N

Bu

Bu

PhX = f ( )

Quantitative Structure Property Relationships (QSPR)

X = distribution coefficient, extraction constant, ….

The SMF method is based on the representation of a molecule by its fragments and on the calculation of their contributions to a given property.

V. P. Solov’ev, A. Varnek, G. Wipff, J. Chem. Inf. Comput. Sci., 2000, 40, 847-858

A. Varnek, G. Wipff, V. P. Solov’ev, Solvent Extract. Ion. Exch., 2001, 19, 791-837

A. Varnek, G. Wipff, V. P. Solov’ev, J. Chem. Inf. Comput. Sci., 2002, 42, 812-829

V. P. Solov’ev, A. Varnek, J. Chem. Inf. Comput. Sci., 2003, 43, 1703 - 1719

Substructural Molecular Fragments (SMF) method

Fragment Descriptors: - atom/bond sequences from 2 to 6 atoms;- « augmented » atoms

QSPR module

TRAIL programQSPR module

TRAIL procedure for the property X

1. Training stage• generates 147 computational models involving 49 types of fragments and 3 fitting equations;

• uses all generated models in order to fit fragment contributions;

• applies statistical criteria to select the “best fit” models for the Training set;

2. Prediction stage• applies the best models to “predict” properties of compounds from the Test and/or CombiLibrary sets.

QSPR module

Complexation: Assessment of stability constants • phosphoryl-containing podands + K+ in THF/CHCl3

• crown-ethers + Na+, K+ and Cs+ in MeOH• -cyclodextrins + neutral guests in water

• Octanol / Water partition coefficients• Eight physical properties of C2 - C9 hydrocarbons

Test calculations

Solvent ExtractionExtraction constants UO2

2+ extracted in chloroform by phosphoryl-containing ligands

Distribution coefficients Hg, In or Pt extracted in DChE by phosphoryl-cont. podands UO2

2+ extracted in DChE by mono- and tripodands

UO22+ extracted in toluene by amides

Application of the SMF method

Biological propertiesAnti-HIV activity of HEPT, TIBO and CU derivatives

CODESSA PRO (Prof. A.R. Katritzky, Univ. of Florida, USA)

ConstitutionalTopologicalGeometrical ElectrostaticCharged Partial Surface Area (CPSA) Quantum-chemicalMO-related Thermodynamical

The program uses about 700 Physico-Chemical Descriptors

Fragment descriptors from TRAIL could be used as « external » descriptors of CODESSA-PRO

Supplementary QSPR tools

Fitting and validation of structure – property models

Building of structure - property models

Selection of the best models according to statistical criteria

Splitting of an initial data set into training and test sets

Train

ing setT

est

Initial d

ata set

“Prediction” calculations using the best structure - property models

10 – 15 %

Property (X) predictions using best fit models

Compound model 1 model 2 … mean ± s

Compound 1 X11 X12 … <X1> ± X1

Compound 2 X21 X22 … <X2> ± X2

Compound m Xm1 Xm2 … <Xm> ± Xm

« Divide and Conquer » strategy for structurally diverse data sets

The clustering module splits the initial data set into congeneric sub-sets for which QSPR models could be developed

Clustering module

Knowledge Base

The Knowledge Base: stores the QSPR models and predicts the properties

ISIDA project

• Generation of virtual combinatorial libraries• Screening and Hits selection.

Exploitation of Knowledge:

R1 NR2

O

R3

Markush structure

Program CombiLib generates virtual combinatorial libraries based on the Markush structures when selected substituents are attached to a given molecular core.

Combinatorial module

Applications

- Complexation of crown-ethers with alkali cations

- Extraction of UO22+ by phosphoryl-containing podands

ISIDA project

Complexation of crown-ethers with alkali cations

OO

O

OO

O+ M+

OO

O

OO

OM+

Different properties compared to acyclic ligands: macrocyclic effect:

ME = (logK)crown - (logK)acyclic

OO

O

OO

O+ M+

OO

O

OO

OM+

Complexation of crown-ethers with alkali cations

- Estimation of stability constants for acyclic analogues of crowns

- Estimation of macrocyclic effect

- QSPR modelling on structurally diverse data set

Goal:

A. Varnek, G. Wipff, V. P. Solov’ev, J. Chem. Inf. Comput. Sci., 2002, 42, 812-829

OO

O

OO

O+ M+

OO

O

OO

OM+

Complexation of crown-ethers with alkali cations: macrocyclic effect

log = ao + ai Ni

log = ao + ai Ni + bi (2Ni 2

- 1)

log = ao + ai Ni + bik Ni Nk

L + M+ in MeOH:

acycl = 0.7

Na+ : Ncycl = 2 (15c5); 3 (18c6); 0 (other)

K+ : Ncycl = 2 (15c5); 5 (18c6); 3 (21c7); 2 (24c8 - 36c12); 0 (other)

acyclic macrocyclic

+ acycl Ncycl

+ acycl Ncycl

+ acycl Ncycl

OO

O O

OOO

OO

R3

R4

OOO

OO

OO

O

OO

O

OO

O

OO

O

OO

O

OO

OO

O

R1

R1

R1

R1

R2

R5

R5

R5

R5

n

R1 = H, Alk; n =1-7R2 = H, Alk, CH2(OH)CH2NHCH3

R3 = H, AlkR4 = CH2NH-Alk, CH2O-Alk, CH2(OCH2O)1,2-Alk

R5 = H, Alk, m = 1-3

m

Training stage

1 2 3 4 5 61

2

3

4

5

6

LogKcalc, mean

LogKexp

n=108, R2=0.952,F=2103, s=0.22

Crown-ethers with K+ in MeOH

Crown-ethers with K+ in MeOH

Validation stage

O

OO

OOOO

OO

O

OO

O

OO

O

OO

O

OO

OOO

O O

O

O

OO

OO

OO

O

OO

OO

O

OO

O

OO

O

OO

O

OO

O

O

O

O

O

O

O OO

OOO

OO

OO

OOO

1 2 3 4 5 6

2

3

4

5

LogKcalc, mean

LogKexp

n=11, R2=0.924,F=110.0, s=0.33

0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

Acyclic polyethers with K+ in MeOH

“Prediction” of logKCH3

O OCH34 CH3

O OCH35 CH3

O OCH36

CH3

O OCH37 3

O OCH3

OHO O

CH3OH

4

OO

OCH3

OO

OCH3 OO

OCH3

OO

OCH3

3CH3 O

O O OCH3

3

CH3 OO O O

CH3

4 4

OO

O O

OHOH

OO

OO

O

OHOHOHOH

OO

O

LogKcalc, mean

LogKexp

n=13, R2=0.732,F=30.1, s=0.24

The ratio () of the average ME contribution and experimental logK for different macrocyclic scaffolds for Na+ (), K+ () and Cs+ () crown ether complexes respectively.

0.0

0.4

0.8

1.2

15c5 18c6 21c7 24c8 30c10

L + M+ in MeOH: estimation of the macrocyclic effect

= (acyclNcycl) / logK

SOLVENT EXTRACTION

M1+

M2+

An-

L

« In silico » design of new compounds

EXPERIMENT

Expert system

Generation of combinatorial

libraries

Models « structure-activity »

Screening

Database

Extraction of UO22+ by phosphoryl-containing podands:

QSPR modeling of distribution coefficient (logD)

PX

P

O O

R

R

R

R P

O

O X

Ph

PhPO

3

P

O

R

R

P X

O

OPh

Ph

Y YP X

O

R

R

PX

O

R

R

R = Ph, Tol, OEt

X = (CH2)n-O-(CH2)m, (CH2)n

Y = (CH2)n-O-(CH2)m, (CH2)n,

OCH2P(O)MeCH2O

calculations were performed for the initial data set of 32 podands as well as for two training (test) sets of 29 (3) compounds

Extraction of UO22+ by podands: QSPR modeling of logD

Fragment descriptors, TRAIL: 3 models

Pre-selected 262 « classical » descriptors, CODESSA: 0 models (!)

Mixed (16 fragment + 262 « classical ») descriptors, CODESSA: 2 models

Generation of Virtual Extractants and Hits Selection

Generated Focussed Combinatorial Library of Podans:

2200 compounds

Hits selection

Screening

Blind test : are our predictions reliable ?!

-1

0

1

2

3

4

1 2 3 4 5 6 7 8

EXP

TRAIL

CODESSA - PRO

logD(UO22+)

N° of compound

Extraction properties for 7 of 8 new compounds have been correctly predicted

Synthesis

Extractionexperiments

P O

OPO

O

O

PO

OP

P O

O

O

O

P

P O

O

OP

POO

PO

O

PO

PO

O

O

POO

PO

O POP

O

OO

OO

P OPO

O

O PO

OP

O

1 2

3 4

5 6

7 8

Theoretically generated compoundsVarnek, A.; Fourches, D.; Solov'ev, V.; Katritzky, A. R.; et al J. Chem. Inf. Comp. Sci. 2004, 44, 0000.

« In silico » design of new compounds

EXPERIMENT

Expert system

Generation of combinatorial

libraries

Models « structure-activity »

Screening

Database

ACKNOWLEDGEMENTS

Denis FOURCHES Nicolas SIEFFERT

Dr Vitaly SOLOVIEV (IPAC, Russia)

Prof. Alan Katritzky (Univ. of Florida, USA)

Prof. G. Wipff

GDR PARIS

top related