density functional theory and nuclear quantum effects

Post on 24-Jan-2022

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Grassmann manifold, gauge, and quantum chemistry

Lin Lin

Department of Mathematics, UC Berkeley; Lawrence Berkeley National Laboratory

Flatiron Institute, April 2019

1

Stiefel manifoldโ€ข โ„‚๐‘€๐‘€ร—๐‘๐‘ ๐‘€๐‘€ > ๐‘๐‘

โ€ข Stiefel manifold (1935): ๐‘๐‘ orthogonal vectors in โ„‚๐‘€๐‘€

๐‘†๐‘†๐‘ก๐‘ก๐‘€๐‘€,๐‘๐‘ = ๐‘‹๐‘‹ โˆˆ โ„‚๐‘€๐‘€ร—๐‘๐‘|๐‘‹๐‘‹โˆ—๐‘‹๐‘‹ = ๐ผ๐ผ๐‘๐‘

2

๐‘€๐‘€

๐‘๐‘

Grassmann manifoldโ€ข Grassmann manifold (1848): set of ๐‘๐‘ dimensional

subspace in โ„‚๐‘€๐‘€

๐บ๐บ๐‘Ÿ๐‘Ÿ๐‘€๐‘€,๐‘๐‘ = ๐‘†๐‘†๐‘ก๐‘ก๐‘€๐‘€,๐‘๐‘/๐’ฐ๐’ฐ๐‘๐‘

๐’ฐ๐’ฐ๐‘๐‘: ๐‘๐‘ dimensional unitary group (i.e. the set of unitary matrices in โ„‚๐‘๐‘ร—๐‘๐‘)

โ€ข Any point in ๐‘†๐‘†๐‘ก๐‘ก๐‘€๐‘€,๐‘๐‘ can be viewed as a representation of a point in ๐บ๐บ๐‘Ÿ๐‘Ÿ๐‘€๐‘€,๐‘๐‘

3

Example (in optimization)min๐‘‹๐‘‹

๐น๐น(๐‘‹๐‘‹)๐‘ ๐‘ . ๐‘ก๐‘ก.๐‘‹๐‘‹โˆ—๐‘‹๐‘‹ = ๐ผ๐ผ๐‘๐‘

โ€ข ๐น๐น ๐‘‹๐‘‹ = ๐น๐น ๐‘‹๐‘‹๐‘‹๐‘‹ ,๐‘‹๐‘‹ โˆˆ ๐’ฐ๐’ฐ๐‘๐‘. invariant to the choice of basis โ‡’Optimization on a Grassmann manifold.

โ€ข The representation ๐‘‹๐‘‹ is called the gauge in quantum physics / chemistry. Gauge invariant.

4

Example (in optimization)min๐‘‹๐‘‹

๐น๐น(๐‘‹๐‘‹)๐‘ ๐‘ . ๐‘ก๐‘ก.๐‘‹๐‘‹โˆ—๐‘‹๐‘‹ = ๐ผ๐ผ๐‘๐‘

โ€ข Otherwise, if ๐น๐น(๐‘‹๐‘‹) is gauge dependent โ‡’ Optimization on a Stiefel manifold.

โ€ข [Edelman, Arias, Smith, SIMAX 1998] many works following

5

This talk: Quantum chemistryโ€ข Time-dependent density functional theory (TDDFT)

โ€ข Kohn-Sham density functional theory (KSDFT)

โ€ข Localization.

โ€ข Gauge choice is the key

โ€ข Used in community software packages: Quantum ESPRESSO, Wannier90, Octopus, PWDFT etc

6

7

Time-dependent density functional theory

Parallel transport gauge

Time-dependent density functional theory[Runge-Gross, PRL 1984] (spin omitted, ๐‘๐‘๐‘’๐‘’: number of electrons)

๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘ก๐œ“๐œ“๐‘–๐‘– ๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก = ๐ป๐ป ๐‘ก๐‘ก,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก ๐œ“๐œ“๐‘–๐‘– ๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก , ๐‘–๐‘– = 1, โ€ฆ ,๐‘๐‘๐‘’๐‘’

๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅโ€ฒ, ๐‘ก๐‘ก = ๏ฟฝ๐‘–๐‘–=1

๐‘๐‘๐‘’๐‘’

๐œ“๐œ“๐‘–๐‘–(๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก)๐œ“๐œ“๐‘–๐‘–โˆ—(๐‘ฅ๐‘ฅโ€ฒ, ๐‘ก๐‘ก)

Hamiltonian

๐ป๐ป ๐‘ก๐‘ก,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก = โˆ’12ฮ” + ๐‘‰๐‘‰๐‘’๐‘’๐‘’๐‘’๐‘ก๐‘ก(๐‘ก๐‘ก) + ๐‘‰๐‘‰๐ป๐ป๐‘’๐‘’๐ป๐ป[๐‘ƒ๐‘ƒ ๐‘ก๐‘ก ]

8

Density matrixโ€ข Key quantity throughout the talkโ€ข ฮจ(t) = ๐œ“๐œ“1 ๐‘ก๐‘ก , โ€ฆ ,๐œ“๐œ“๐‘๐‘๐‘’๐‘’ ๐‘ก๐‘ก โˆˆ โ„‚๐‘๐‘๐‘”๐‘”ร—๐‘๐‘๐‘’๐‘’. ๐‘๐‘๐‘”๐‘”: number of discretized grid points to represent each ๐œ“๐œ“๐‘–๐‘–

๐‘ƒ๐‘ƒ ๐‘ก๐‘ก = ฮจ ๐‘ก๐‘ก ฮจ ๐‘ก๐‘ก โˆ—

9

=๐‘๐‘๐‘”๐‘”

๐‘๐‘๐‘”๐‘” ๐‘๐‘๐‘”๐‘”๐‘๐‘๐‘’๐‘’

Gauge invarianceโ€ข Unitary rotation

ฮฆ = ฮจ๐‘‹๐‘‹, ๐‘‹๐‘‹โˆ—๐‘‹๐‘‹ = ๐ผ๐ผ

๐‘ƒ๐‘ƒ = ฮฆฮฆโˆ— = ฮจ(๐‘‹๐‘‹๐‘‹๐‘‹โˆ—)ฮจโˆ— = ฮจฮจโˆ—

โ€ข Propagation of the density matrix, von Neumann equation (quantum Liouville equation)

๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘ก๐‘ƒ๐‘ƒ ๐‘ก๐‘ก = ๐ป๐ป,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก = ๐ป๐ป ๐‘ก๐‘ก,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก ๐‘ƒ๐‘ƒ ๐‘ก๐‘ก โˆ’ ๐‘ƒ๐‘ƒ(๐‘ก๐‘ก)๐ป๐ป ๐‘ก๐‘ก,๐‘ƒ๐‘ƒ ๐‘ก๐‘ก

10

Gauge choice affects the time stepExtreme case (boring Hamiltonian)

๐ป๐ป ๐‘ก๐‘ก โ‰ก ๐ป๐ป0

Initial condition๐ป๐ป0๐œ“๐œ“๐‘–๐‘– 0 = ๐œ“๐œ“๐‘–๐‘– 0 ๐œ€๐œ€๐‘–๐‘–

Exact solution๐œ“๐œ“๐‘–๐‘– ๐‘ก๐‘ก = ๐œ“๐œ“๐‘–๐‘–(0)๐‘’๐‘’โˆ’๐‘–๐‘–๐œ€๐œ€๐‘–๐‘–๐‘ก๐‘ก

๐‘ƒ๐‘ƒ ๐‘ก๐‘ก = ๐‘ƒ๐‘ƒ(0)

11

Small time step

(Formally) arbitrarily largetime step

P v.s. ฮจโ€ข Propagation of ๐‘ƒ๐‘ƒ(๐‘ก๐‘ก) requires storing ๐‘๐‘๐‘”๐‘” ร— ๐‘๐‘๐‘”๐‘” matrix. Often

impractical for large basis set (๐‘๐‘๐‘”๐‘” = 103 โˆผ 107)

โ€ข Propagation of ฮจ(๐‘ก๐‘ก) requires storing ๐‘๐‘๐‘”๐‘” ร— ๐‘๐‘๐‘’๐‘’ matrix, but is non-optimal due to gauge choice (๐‘๐‘๐‘’๐‘’ = 10 โˆผ 104)

โ€ข ๐‘ƒ๐‘ƒ is only a rank ๐‘๐‘๐‘’๐‘’ matrix. Not enough information to justify storing as dense matrix.

โ€ข Common theme in quantum chemistry.

12

Propagation on the Grassmann manifoldโ€ข The Schrรถdinger gauge can be seen as

ฮฆ ๐‘ก๐‘ก = ฮจ ๐‘ก๐‘ก ๐‘‹๐‘‹ ๐‘ก๐‘ก , ๐‘‹๐‘‹ ๐‘ก๐‘ก โ‰ก ๐ผ๐ผ

โ€ข Optimal choice of ๐‘‹๐‘‹(๐‘ก๐‘ก) at each time step, to yield slowest possible dynamics โ‡’Optimization on the Grassmann manifold

โ€ข Related work: dynamical low rank decomposition [Koch-Lubich 2007; Lubich-Oseledets, 2014]

13

Optimization of gauge choiceโ€ข Gauge transformed wavefunctions

ฮฆ ๐‘ก๐‘ก = ฮจ ๐‘ก๐‘ก ๐‘‹๐‘‹ ๐‘ก๐‘ก , ๐‘‹๐‘‹โˆ— ๐‘ก๐‘ก ๐‘‹๐‘‹ ๐‘ก๐‘ก = ๐ผ๐ผ

โ€ข Goal:

min๐‘ˆ๐‘ˆ(๐‘ก๐‘ก)

๐œ•๐œ•๐‘ก๐‘กฮฆ(๐‘ก๐‘ก) ๐น๐น2

โ€ข ๐‘ƒ๐‘ƒ ๐‘ก๐‘ก ฮฆ t = ฮฆ(๐‘ก๐‘ก), optimization at each time step

14

Optimization of gauge choiceโ€ข Orthogonal decomposition

ฮฆฬ‡ ๐น๐น2 = ๐‘ƒ๐‘ƒฮฆฬ‡ ๐น๐น

2 + (๐ผ๐ผ โˆ’ ๐‘ƒ๐‘ƒ)ฮฆฬ‡ ๐น๐น2

โ€ข After some derivation(๐ผ๐ผ โˆ’ ๐‘ƒ๐‘ƒ)ฮฆฬ‡ ๐น๐น

2 = Tr ๏ฟฝฬ‡๏ฟฝ๐‘ƒ2๐‘ƒ๐‘ƒ

โ€ข Optimizer (parallel transport condition)๐‘ƒ๐‘ƒฮฆฬ‡ = 0

โ€ข Also induce a parallel transport propagator๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘ก๐’ฏ๐’ฏ = ๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘ก๐‘ƒ๐‘ƒ,๐‘ƒ๐‘ƒ ๐’ฏ๐’ฏ, ๐’ฏ๐’ฏ 0 = ๐ผ๐ผ, ฮฆ ๐‘ก๐‘ก = ๐’ฏ๐’ฏ ๐‘ก๐‘ก ฮจ0

15

Gauge invariant!

Parallel transport (PT) dynamicsโ€ข Schrรถdinger dynamics

๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘กฮจ = ๐ป๐ปฮจ, ฮจ 0 = ฮจ0โ€ข Parallel transport dynamics

๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘กฮฆ = ๐ป๐ปฮฆโˆ’ฮฆ ฮฆโˆ—๐ป๐ปฮฆ , ฮฆ 0 = ฮจ0

Gauge implicitly defined by the dynamics Only one additional mixing term needed, simple to implement Optimal gauge among all possible choices Mixing term ๐‘‚๐‘‚ ๐‘๐‘3 cost

16

[An, L., arXiv:1804.02095 ][Jia, An, Wang, L., J. Chem. Theory Comput., 2018]

How PT dynamics worksโ€ข Boring Hamiltonian: ๐ป๐ป ๐‘ก๐‘ก โ‰ก ๐ป๐ป0, ๐ป๐ป0ฮจ0 = ฮจ0ฮ›0, ฮฆ0 = ฮจ0โ€ข ๐ป๐ปฮฆโˆ’ฮฆ ฮฆโˆ—๐ป๐ปฮฆ = 0 โ‡’ ๐‘–๐‘–๐œ•๐œ•๐‘ก๐‘กฮฆ = 0

Same behavior as density matrix

โ€ข 1D time-dependent Schrรถdinger:

17

Implicit time integratorโ€ข PT dynamics can be discretized with any integrator

โ€ข Smooth dynamics โ‡’ Larger time

โ€ข Implicit integrator: Allow ๐ป๐ปฮ”๐‘ก๐‘ก โ‰ซ 1

18

Implicit time integratorโ€ข Example: PT-CN (Crank-Nicolson scheme, a.k.a.

trapezoidal rule)

โ€ข ฮฆ๐‘›๐‘›+1 needs to be solved self-consistently. Preconditioner. Mixing.

โ€ข Natural to combine with Ehrenfest dynamics

โ€ข Many others are possible

19

Analysisโ€ข Near-adiabatic regime, singularly perturbed (๐œ€๐œ€ โ‰ช 1)

๐‘–๐‘–๐œ€๐œ€๐œ•๐œ•๐‘ก๐‘ก๐œ“๐œ“ = ๐ป๐ป(๐‘ก๐‘ก)๐œ“๐œ“๐‘–๐‘–๐œ€๐œ€๐œ•๐œ•๐‘ก๐‘ก๐œ‘๐œ‘ = ๐ป๐ป ๐‘ก๐‘ก ๐œ‘๐œ‘ โˆ’ ๐œ‘๐œ‘(๐œ‘๐œ‘โˆ—๐ป๐ป ๐‘ก๐‘ก ๐œ‘๐œ‘)

Theorem [An-L., 2018] symplectic integrator of order ๐‘˜๐‘˜, up to ๐‘‡๐‘‡ โˆผ ๐‘‚๐‘‚(1),

error โˆผ ๏ฟฝฮ”๐‘ก๐‘ก๐‘˜๐‘˜

๐œ€๐œ€๐‘˜๐‘˜+1, Schrรถdinger

ฮ”๐‘ก๐‘ก๐‘˜๐‘˜

๐œ€๐œ€๐‘˜๐‘˜, parallel transport

20

[An, L., arXiv:1804.02095 ]

Proof sketchKey: Refined adiabatic theorem

Lemma There exists decomposition

๐œ‘๐œ‘ ๐‘ก๐‘ก = ๐œ‘๐œ‘๐ด๐ด ๐‘ก๐‘ก + ๐œ€๐œ€๐œ‘๐œ‘๐‘…๐‘…(๐‘ก๐‘ก)

up to ๐‘‡๐‘‡ โˆผ ๐‘‚๐‘‚(1). ๐œ‘๐œ‘๐ด๐ด ๐‘ก๐‘ก is eigenstate of ๐ป๐ป(๐‘ก๐‘ก) and is ๐œ€๐œ€-independent (including phase factor). ๐œ‘๐œ‘๐‘…๐‘…(๐‘ก๐‘ก) 2 is bounded ๐œ€๐œ€-independent.

21

Implementation in electronic structure software packages

โ€ข DGDFT / PWDFT

โ€ข Octopus (most widely used package for TDDFT, in progress)

22

Absorption spectrumโ€ข Anthracene (C14H10)โ€ข Compare RT-TDDFT (PWDFT) and linear response

TDDFT (Quantum ESPRESSO). โ€ข PT-CN 8 times faster than S-RK4

23

[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]

Ultrafast dynamicsโ€ข Benzeneโ€ข Slow laser (800 nm wavelength)โ€ข PT-CN 32 times faster than S-RK4

24

[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]

Ultrafast dynamicsโ€ข Fast laser (250 nm wavelength)โ€ข PT-CN 10 times faster than S-RK4

25

[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]

Efficiencyโ€ข Silicon from 32 to 1000 atoms, ~10 times fasterโ€ข Parallel implementation up to 2000 cores.

26

Ion collisionโ€ข Clโˆ’ ion through graphene nanoflake (113 atoms)

27

Ion collision

28

S-RK4 ฮ”๐‘ก๐‘ก: 0.5 as, 78 hours, 228 coresPT-CN ฮ”๐‘ก๐‘ก: 50 as, 5.2 hours, 228 cores

Hybrid functional RT-TDDFTโ€ข For the first time, practical hybrid functional RT-TDDFT

calculations with a large basis set

29

[Jia, L., Comput. Phys. Commun. 2019]

GPU acceleration on Summitโ€ข No. 1 supercomputer in the Top500 list in November, 2018

โ€ข Silicon with 1536 atoms

โ€ข Scale to 768 GPUs

โ€ข 34 x times faster than CPU with 3072 cores

โ€ข 1.5 hr per femtosecond (fs)

30

[Jia, Wang, L., submitted]

Conclusionโ€ข Parallel transport dynamics: optimal gauge choice

โ€ข Cost โˆผ Schrรถdinger dynamics (wavefunction)Time step โˆผ von Neumann dynamics (density matrix)

โ€ข Implicit time integrators demonstrated to be effective for TDDFT for the first time (c.f. Pueyo et al JCTC 2018). Significantly improved efficiency.

31

32

Electron localization

Selected columns of density matrix

Localization problemโ€ข ฮจ: Kohn-Sham orbitals

dense, unitary matrix of size ๐‘๐‘๐‘”๐‘” ร— ๐‘๐‘๐‘’๐‘’ ๐‘๐‘๐‘”๐‘” โ‰ซ ๐‘๐‘๐‘’๐‘’

โ€ข ๐œ€๐œ€-sparse representationฮฆโˆ’ฮจU ๐น๐น โ‰ค ๐œ€๐œ€

Each column of ฮฆ is sparse. ๐‘‹๐‘‹ is an ๐‘๐‘๐‘’๐‘’ ร— ๐‘๐‘๐‘’๐‘’ unitary matrix.

33

ฮฆฮจ

Wannier functionsโ€ข Maximally localized Wannier function (MLWF) [Marzari-

Vanderbilt, Phys. Rev. B 1997].

โ€ข Reason for the existence of MLWF for insulating systems [Kohn, PR 1959] [Nenciu, CMP 1983] [Panati, AHP 2007], [Brouder et al, PRL 2007] [Benzi-Boito-Razouk, SIAM Rev. 2013] etc

34

Silicon Graphene

Application of Wannier functionsโ€ข Analysis of chemical bondingโ€ข Band-structure interpolationโ€ข Basis functions for DFT calculations (representing

occupied orbitals ๐œ“๐œ“๐‘–๐‘–)โ€ข Basis functions for excited state calculations (representing

Hadamard product of orbitals ๐œ“๐œ“๐‘–๐‘– โŠ™ ๐œ“๐œ“๐‘—๐‘—)โ€ข Strongly correlated systems (DFT+U)โ€ข Phonon calculationsโ€ข etc

[Marzari et al. Rev. Mod. Phys. 2012]

35

Maximally localized Wannier functionsโ€ข Geometric intuition: Minimization of โ€œspreadโ€ or second

moment.

minฮฆ=ฮจ๐‘ˆ๐‘ˆ,๐‘ˆ๐‘ˆโˆ—๐‘ˆ๐‘ˆ=๐ผ๐ผ

ฮฉ ฮฆ

ฮฉ ฮฆ = ๏ฟฝ๐‘—๐‘—=1

๐‘๐‘๐‘’๐‘’

๏ฟฝ ๐œ™๐œ™๐‘—๐‘— ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 ๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’ ๏ฟฝ ๐œ™๐œ™๐‘—๐‘— ๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

โ€ข ๐‘‹๐‘‹: gauge degrees of freedom

36

Maximally localized Wannier functionsRobustness

โ€ข Initialization: Nonlinear optimization and possible to get stuck at local minima.

โ€ข Entangled band: Localization in the absence of band gap.

Both need to be addressed for high throughput computation.

37

Density matrix perspectiveฮจ is unitary, then

๐‘ƒ๐‘ƒ = ฮจฮจโˆ—

is a projection operator, and is gauge invariant.

๐‘ƒ๐‘ƒ = ฮจฮจโˆ— = ฮฆ(๐‘‹๐‘‹โˆ—๐‘‹๐‘‹)ฮฆโˆ— = ฮฆฮฆโˆ—

is close to a sparse matrix.

โ€ข Can one construct sparse representation directly from the density matrix?

38

Algorithm: Selected columns of the density matrix (SCDM)Code (MATLAB. Psi: matrix of size ๐‘๐‘๐‘”๐‘” ร— ๐‘๐‘๐‘’๐‘’)

[U,R,perm] = qr(Psi', 0);

Phi = Psi * U;

โ€ข Very easy to code and to parallelize!โ€ข Deterministic, no initial guess.โ€ข perm encodes selected columns of the density matrix

39

Pivoted QR

GEMM

[Damle-L.-Ying, JCTC, 2015]

k-pointโ€ข Strategy: find columns using one โ€œanchorโ€ k-point (such

as ฮ“), and then apply to all k-points

40

SCDM: A flexible frameworkโ€ข Molecular or periodic systems

โ€ข Isolated or entangled bands

โ€ข Variational formulation

[Damle-L., MMS 2018][Damle-L.-Levitt, MMS 2019]

41

SCDM in software packagesโ€ข MATLAB/Julia code

https://github.com/asdamle/SCDMhttps://github.com/antoine-levitt/wannier

โ€ข Quantum ESPRESSO [I. Carnimeo, S. Baroni, P. Giannozzi, arXiv: 1801.09263]

โ€ข Wannier90 [V. Vitale et al] (starting from v3.0)http://www.wannier.org/

42

Entangled bands

43

Entangled case 1 (metal, valence + conduction):

Entangled case 2 (near Fermi energy):

Examples of SCDM orbitals (ฮ“-point)

44

Silicon Water

Examples of SCDM orbitals (k-point)

45

Cr2O3. k-point grid 6 ร— 6 ร— 6Initial spread from SCDM: 17.22 ร…2

MLWF converged spread: 16.98 ร…2

Example: band interpolation

46

Si Cu

Band structure interpolation: Al

47

SCDM spread: 18.38 ร…2

10x10x10 k-points, 6 bands โ‡’ 4 bands (no disentanglement)

Wannier: optimized spread: 12.42 ร…2

Smaller spread Better interpolation

Implementation in Wannier 90

Credit: Dr. Valerio Vitale (APS March meeting 2019)

48

Implementation in Wannier 90

Credit: Dr. Valerio Vitale (APS March meeting 2019)

49

Conclusionโ€ข Extract information from the gauge-invariant density

matrix

โ€ข Selected columns of the density matrix (SCDM) is a simple, robust and deterministic method to find localized orbitals. Alternative method to the Maximally Localized Wannier functions.

โ€ข Wannier localization can be robustly initialized with SCDM (already in Wannier90). High-throughput materials simulation

50

51

Kohn-Sham density functional theory

Projected commutator DIIS

Kohn-Sham density functional theory

52

๐ป๐ป ๐œŒ๐œŒ ๐œ“๐œ“๐‘–๐‘– ๐‘ฅ๐‘ฅ = โˆ’12ฮ” + ๐‘‰๐‘‰๐‘’๐‘’๐‘’๐‘’๐‘ก๐‘ก ๐‘ฅ๐‘ฅ + ๐‘‰๐‘‰๐ป๐ป๐‘’๐‘’๐ป๐ป ๐‘ƒ๐‘ƒ (๐‘ฅ๐‘ฅ) ๐œ“๐œ“๐‘–๐‘– ๐‘ฅ๐‘ฅ = ๐œ€๐œ€๐‘–๐‘–๐œ“๐œ“๐‘–๐‘– ๐‘ฅ๐‘ฅ

๐‘ƒ๐‘ƒ ๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅโ€ฒ, ๐‘ก๐‘ก = ๏ฟฝ๐‘–๐‘–=1

๐‘๐‘๐‘’๐‘’

๐œ“๐œ“๐‘–๐‘–(๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก)๐œ“๐œ“๐‘–๐‘–โˆ—(๐‘ฅ๐‘ฅโ€ฒ, ๐‘ก๐‘ก) ,

๏ฟฝ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐œ“๐œ“๐‘–๐‘–โˆ— ๐‘ฅ๐‘ฅ ๐œ“๐œ“๐‘—๐‘— ๐‘ฅ๐‘ฅ = ๐›ฟ๐›ฟ๐‘–๐‘–๐‘—๐‘— , ๐œ€๐œ€1 โ‰ค ๐œ€๐œ€2 โ‰ค โ‹ฏ โ‰ค ๐œ€๐œ€๐‘๐‘๐‘’๐‘’

โ€ข In principle exact many body ground state energy.

โ€ข Most widely used electronic structure theory for condensed matter systems and molecules

โ€ข [Hohenberg-Kohn,1964], [Kohn-Sham, 1965], Nobel Prize in Chemistry, 1998

Self consistent field / Fixed point problem

๐‘ฅ๐‘ฅ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

Kohn-Sham density functional theory

๐‘ƒ๐‘ƒ = โ„ฑ[๐‘ƒ๐‘ƒ]

More precisely

๐ป๐ป P ๐œ“๐œ“๐‘–๐‘– = ๐œ“๐œ“๐‘–๐‘–๐œ†๐œ†๐‘–๐‘– , ๐‘ƒ๐‘ƒ = ๏ฟฝ๐‘–๐‘–

๐œ“๐œ“๐‘–๐‘–๐œ“๐œ“๐‘–๐‘–โˆ—

53

SCF: Fixed point problemโ€ข Fixed point iteration ๐‘ฅ๐‘ฅ๐‘˜๐‘˜+1 = ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘˜๐‘˜). Diverges quickly.

โ€ข Simple mixing. ๐‘ฅ๐‘ฅ๐‘˜๐‘˜+1 = ๐›ผ๐›ผ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ + 1 โˆ’ ๐›ผ๐›ผ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜. Often works but can be very slow

โ€ข Broyden-type methods: method of choice for practical calculations.

โ€ข Direct Inversion of the iterative subspace (DIIS) [Pulay1980; 1982] (another equivalent version is Anderson acceleration [Anderson 1965])

54

SCF: Quantum chemistโ€™s viewpointโ€ข commutator-DIIS (c-DIIS). Most widely used method in

quantum chemistry software packages

โ€ข Residual๐‘…๐‘… ๐‘ƒ๐‘ƒ = ๐ป๐ป ๐‘ƒ๐‘ƒ ,๐‘ƒ๐‘ƒ = ๐ป๐ป ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ๐ป๐ป[๐‘ƒ๐‘ƒ]

โ€ข Necessary condition for SCF convergence

๐‘…๐‘… ๐‘ƒ๐‘ƒ = 0

55

[Pulay CPL 1982; Kudin-Scuseria-Cances JCP 2002; Kudin-Scuseria M2AN 2007][T. Rohwedder, R. Schneider, JMC 2011]

C-DIISโ€ข Extrapolate the Fock matrix

โ€ข Obtain coefficients by minimizing the residual

โ€ข Equivalent to a version of Broydenโ€™s method

56

Convergence of C-DIIS

57

Comparison of SCF convergence patterns for (CH3)2CHOH with the Huckelguess at the RHF/6-31G(d) level of theory. [Kudin-Scuseria M2AN 2007]

C-DIIS is not suitable for large basis setโ€ข Large basis: planewaves, finite elements, wavelets etc

๐‘ƒ๐‘ƒ = ฮจฮจโˆ— โˆˆ โ„‚๐‘๐‘๐‘”๐‘”ร—๐‘๐‘๐‘”๐‘” , ฮจ โˆˆ โ„‚๐‘๐‘๐‘”๐‘”ร—๐‘๐‘๐‘’๐‘’

โ€ข ๐‘๐‘๐‘”๐‘” โˆผ 1000๐‘๐‘๐‘’๐‘’. Cannot store ๐ป๐ป,๐‘…๐‘…,๐‘ƒ๐‘ƒ

58

Projected commutator DIISโ€ข Project to a set of gauge fixing orbitals ฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ โˆˆ โ„‚๐‘๐‘๐‘”๐‘”ร—๐‘๐‘๐‘’๐‘’

with full column rankฮฆ = ๐‘ƒ๐‘ƒฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ

โ€ข Use ฮฆ as the mixing variable (gauge-invariant)

59

[Hu-L.-Yang, JCTC, 2017 ]

Projectionโ€ข ฮฆโŸบ ๐‘ƒ๐‘ƒ, if ฮฆ has full column rank

๐‘ƒ๐‘ƒ = ฮฆ ฮฆโˆ—ฮฆ โˆ’1ฮฆโˆ—

โ€ข Use projected commutator๐‘…๐‘…ฮฆ = ๐ป๐ป ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ โˆ’ ๐‘ƒ๐‘ƒ๐ป๐ป ๐‘ƒ๐‘ƒ ฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ

โ€ข Enables C-DIIS for large basis set for the first time

60

[Hu-L.-Yang, JCTC, 2017 ]

PC-DIISโ€ข Minimize

minโˆ‘๐‘—๐‘— ๐›ผ๐›ผ๐‘—๐‘—=1

๏ฟฝ๐‘—๐‘—=๐‘˜๐‘˜โˆ’๐‘™๐‘™

๐‘˜๐‘˜

๐›ผ๐›ผ๐‘—๐‘—๐‘…๐‘…ฮฆ๐‘—๐‘—

๐น๐น

โ€ข Update

๏ฟฝฮฆ = ๏ฟฝ๐‘—๐‘—=๐‘˜๐‘˜โˆ’๐‘™๐‘™

๐‘˜๐‘˜

๐›ผ๐›ผ๐‘—๐‘—ฮฆ๐‘˜๐‘˜

โ€ข Compute

ฮฆ๐‘˜๐‘˜+1 = ๏ฟฝฮฆ ๏ฟฝฮฆโˆ—๏ฟฝฮฆ โˆ’1 ๏ฟฝฮฆโˆ—ฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ

61

PC-DIISProjected commutator

๐‘…๐‘…ฮฆ = ๐ป๐ป ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ โˆ’ ๐‘ƒ๐‘ƒ๐ป๐ป ๐‘ƒ๐‘ƒ ฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ

โ€ข If ฮฆ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ = ฮจ๐‘…๐‘…ฮฆ = ๐ป๐ป ๐‘ƒ๐‘ƒ ฮจ โˆ’ฮจฮ›

โ‡’ Residual of eigenvalue problem.

โ€ข All operations are limited to matrices of size ๐‘๐‘๐‘”๐‘” ร— ๐‘๐‘๐‘’๐‘’

62

Accuracy

63

Efficiency

64

Si 1000 atom on 2000 cores

Ab initio molecular dynamicsโ€ข Wavefunction extrapolation with fixed gauge

65

Conclusionโ€ข Projected C-DIIS enables C-DIIS for large basis set by a

gauge fixing procedure.

โ€ข Recent usage in quantum embedding theory (joint work with Garnet Chan)

โ€ข Remark: Convergence in the nonlinear setup for DIIS is very much missing

66

Acknowledgementโ€ข Dong An (Berkeley)โ€ข Anil Damle (NSF postdoc, now Assistant Professor at Cornell)โ€ข Wei Hu (LBNL, now Professor at USTC)โ€ข Weile Jia (Berkeley)

โ€ข Lin-Wang Wang (LBNL)โ€ข Chao Yang (LBNL)โ€ข Lexing Ying (Stanford)

DOE Base Math, CAMERA, SciDAC, Early Career NSF CAREER. NERSC and BRC for Computing Resources

67

Thank you for your attention!

top related