complex structure of the optimal power flow problem · 2016-01-26 · complex structure of the...

Post on 10-Feb-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Complex Structure of the Optimal Power FlowProblem

Cedric JOSZ, Daniel K. MOLZAHNcedric.josz@rte-france.com

Talk at the University of Illinois at Urbana-Champaign

November 16th 2015

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

My research project

Page du projet MISTIS http://mistis.inrialpes.fr/

1 sur 1 12/07/11 13:28

Université Pierre et Marie CURIE - Sciences et Médecine - ... http://www.upmc.fr/fr/index.html

1 sur 1 12/07/11 12:19

Cedric Josz University of Paris VI (UPMC)

Jean Charles GilbertFrench national institute

in scientific computing (INRIA)

Jean Maeght, Patrick PanciaticiFrench transmission

system operator (RTE)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

French high-voltage network: 400 and 225 kV

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Benchmark network

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Underlying graph

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Optimal power flow

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Motivations

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Time (s)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Vo

lta

ge

(kV

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Two Voltages in Steady State

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Re(V)-1 -0.5 0 0.5 1

Im(V

)

-1

-0.5

0

0.5

1

Voltages in Complex Plane: Local Optimum of 9241-bus European Network

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Re(V)-1 -0.5 0 0.5 1

Im(V

)

-1

-0.5

0

0.5

1

Voltages in Complex Plane: Local Optimum of 9241-bus European Network

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Two-bus network

“g” = conductance

“b” = susceptance

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Power loss minimization

Minimize

g |v1|2 − g v1v2 − g v2v1 + g |v2|2

over v1, v2 ∈ C subject to

−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2 = 0

b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2 = 0

|v1|2 6 (vmax1 )2

|v2|2 6 (vmax2 )2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quadratically-constrained quadratic programming

QCQP-C : infz∈Cn

zHH0z s.t. zHHiz 6 hi , i = 1, . . . ,m

(H0, . . . ,Hm are Hermitian matrices)

(h1, . . . , hm ∈ R)

which can also be written:

infz∈Cn

trace(H0zzH) s.t. trace(Hizz

H) 6 hi , i = 1, . . . ,m

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quadratically-constrained quadratic programming

QCQP-C : infz∈Cn

zHH0z s.t. zHHiz 6 hi , i = 1, . . . ,m

(H0, . . . ,Hm are Hermitian matrices)

(h1, . . . , hm ∈ R)

which can also be written:

infz∈Cn

trace(H0zzH) s.t. trace(Hizz

H) 6 hi , i = 1, . . . ,m

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Non-commutative diagram

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Conversion from complex to real numbers

Ring homomorphism:

Λ : (Cn×n,+,×) −→ (R2n×2n,+,×)

Z 7−→(<Z −=Z=Z <Z

)

Useful properties

1 trace[HiZ ] = 12 trace[Λ(HiZ )] = 1

2 trace [Λ(Hi )Λ(Z )]

2 Z < 0 ⇐⇒ Λ(Z ) < 0

3 Z < 0 and rank Z = 1 ⇐⇒ Λ(Z ) < 0 and rank Λ(Z ) = 2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Conversion from complex to real numbers

Ring homomorphism:

Λ : (Cn×n,+,×) −→ (R2n×2n,+,×)

Z 7−→(<Z −=Z=Z <Z

)

Useful properties

1 trace[HiZ ] = 12 trace[Λ(HiZ )] = 1

2 trace [Λ(Hi )Λ(Z )]

2 Z < 0 ⇐⇒ Λ(Z ) < 0

3 Z < 0 and rank Z = 1 ⇐⇒ Λ(Z ) < 0 and rank Λ(Z ) = 2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Preprocessed data

Test Number of Number ofCase Complex EdgesName Variables in Graph

GB-2224 2,053 2,581PL-2383wp 2,177 2,651PL-2736sp 2,182 2,675PL-2737sop 2,183 2,675PL-2746wop 2,189 2,708PL-2746wp 2,192 2,686PL-3012wp 2,292 2,805PL-3120sp 2,314 2,835PEGASE-89 70 185PEGASE-1354 983 1,526PEGASE-2869 2,120 3,487PEGASE-9241 7,154 12,292PEGASE-9241R 7,154 12,292

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Shor relaxation (generation cost minimization)

Case SDP-R SDP-CName Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,928,194 10.9 1,928,444 6.2PL-2383wp 1,862,979 48.1 1,862,985 23.0PL-2736sp* 1,307,749 35.7 1,307,764 22.0PL-2737sop* 777,505 41.7 777,539 19.5PL-2746wop* 1,208,168 51.1 1,208,182 22.8PL-2746wp 1,631,589 43.8 1,631,655 20.0PL-3012wp 2,588,249 52.8 2,588,259 24.3PL-3120sp 2,140,568 64.4 2,140,605 25.5PEGASE-89* 5,819 1.5 5,819 0.9PEGASE-1354 74,035 11.2 74,035 5.6PEGASE-2869 133,936 38.2 133,936 20.6PEGASE-9241 310,658 369.7 310,662 136.1PEGASE-9241R 315,848 317.2 315,731 95.9

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Second-order conic programming (generation cost min.)

Case SOCP-R SOCP-CName Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,855,393 3.5 1,925,723 1.4PL-2383wp 1,776,726 8.5 1,849,906 2.4PL-2736sp 1,278,926 4.8 1,303,958 1.7PL-2737sop 765,184 5.5 775,672 1.6PL-2746wop 1,180,352 5.1 1,203,821 1.7PL-2746wp 1,586,226 5.5 1,626,418 1.7PL-3012wp 2,499,097 5.9 2,571,422 2.0PL-3120sp 2,080,418 6.2 2,131,258 2.2PEGASE-89 5,744 0.5 5,810 0.4PEGASE-1354 73,102 3.4 73,999 1.5PEGASE-2869 132,520 9.0 133,869 2.7PEGASE-9241 306,050 35.3 309,309 10.0PEGASE-9241R 312,682 36.7 315,411 5.4

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

We need better relaxations!

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment/sum-of-squares hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment/sum-of-squares hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment/sum-of-squares hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Power loss minimization

Minimize

g |v1|2 − g v1v2 − g v2v1 + g |v2|2

over v1, v2 ∈ C subject to

−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2 = 0

b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2 = 0

|v1|2 6 (vmax1 )2

|v2|2 6 (vmax2 )2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex polynomial optimization

Minimize

f (z) :=∑α,β

fα,β zαzβ (where zα := zα1

1 . . . zαnn )

over z ∈ Cn subject to

gi (z) :=∑α,β

gi ,α,β zαzβ > 0 , i = 1, . . . ,m

All functions are real-valued complex polynomialsa.k.a.

Hermitian symmetric polynomials

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Stone-Weierstrass theorem

Real version

Any continuous function on a compact set can be approximated by∑α

fn,αxα uniform convergence−−−−−−−−−−−−→

n−→+∞f ∈ C(K ⊂ Rn,R)

Complex version

Any continuous function on a compact set(((

(((((((

((hhhhhhhhhhhhcan be approximated by∑

α,β

fn,αzα

������

���XXXXXXXXX

uniform convergence−−−−−−−−−−−−→n−→+∞

f ∈ C(K ⊂ Cn,C)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Stone-Weierstrass theorem

Real version

Any continuous function on a compact set can be approximated by∑α

fn,αxα uniform convergence−−−−−−−−−−−−→

n−→+∞f ∈ C(K ⊂ Rn,R)

Complex version

Any continuous function on a compact set(((

(((((((

((hhhhhhhhhhhhcan be approximated by∑

α,β

fn,αzα

������

���XXXXXXXXX

uniform convergence−−−−−−−−−−−−→n−→+∞

f ∈ C(K ⊂ Cn,C)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Stone-Weierstrass theorem

Real version

Any continuous function on a compact set can be approximated by∑α

fn,αxα uniform convergence−−−−−−−−−−−−→

n−→+∞f ∈ C(K ⊂ Rn,R)

Complex version

Any continuous function on a compact set can be approximated by∑α,β

fn,α,β zαzβ

uniform convergence−−−−−−−−−−−−→n−→+∞

f ∈ C(K ⊂ Cn,C)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment approach

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Non-convex optimization

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Global optimum and value

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Variable = point

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Variable = interval

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Average on the interval

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

The optimal interval

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Weighted average

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

variable = probability distribution

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Optimal probability distribution

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Real moment hierarchy (Lasserre 2000)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex moment hierarchy (J. and Molzahn 2015)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Dual point of view

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

Very simple observation:

ε > 0 =⇒ f − f opt︸ ︷︷ ︸>0

+ ε > 0 on the feasible set

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Dual point of view

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

Very simple observation:

ε > 0 =⇒ f − f opt︸ ︷︷ ︸>0

+ ε > 0 on the feasible set

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Real version (Putinar 1993)

f (x) > 0 for all x ∈ Rn s.t. gi (x) > 0 and 1− x21 − . . .− x2

n > 0

=⇒

f (x) = σ0(x) +∑m

i=1 σi (x)gi (x) + σm+1(x)(1− x21 − . . .− x2

n )

(where σi ’s are sums of squares)

Example:

x + 2 > 0 for all x ∈ R s.t. 1− x2 > 0

=⇒

x + 2 =(

x√2

+ 1√2

)2+(

1√2

)2(1− x2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Real version (Putinar 1993)

f (x) > 0 for all x ∈ Rn s.t. gi (x) > 0 and 1− x21 − . . .− x2

n > 0

=⇒

f (x) = σ0(x) +∑m

i=1 σi (x)gi (x) + σm+1(x)(1− x21 − . . .− x2

n )

(where σi ’s are sums of squares)

Example:

x + 2 > 0 for all x ∈ R s.t. 1− x2 > 0

=⇒

x + 2 =(

x√2

+ 1√2

)2+(

1√2

)2(1− x2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Real version (Putinar 1993)

f (x) > 0 for all x ∈ Rn s.t. gi (x) > 0 and 1− x21 − . . .− x2

n > 0

=⇒

f (x) = σ0(x) +∑m

i=1 σi (x)gi (x) + σm+1(x)(1− x21 − . . .− x2

n )

(where σi ’s are sums of squares)

Example:

x + 2 > 0 for all x ∈ R s.t. 1− x2 > 0

=⇒

x + 2 =(

x√2

+ 1√2

)2+(

1√2

)2(1− x2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Complex version (D’Angelo and Putinar 2008)

f (z) > 0 for all z ∈ Cn s.t. gi (z) > 0 and 1− |z1|2 − ..− |zn|2 = 0

=⇒

f (z) = σ0(z) +∑m

i=1 σi (z)gi (z) + pm+1(z)(1− |z1|2 − . . .− |zn|2)

(where σi ’s are Hermitian sums of squares)

Example:

z + z + 3 > 0 for all z ∈ C s.t. 1− |z |2 = 0

=⇒

z + z + 3 = |1|2 + |z + 1|2 + 1× (1− |z |2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Complex version (D’Angelo and Putinar 2008)

f (z) > 0 for all z ∈ Cn s.t. gi (z) > 0 and 1− |z1|2 − ..− |zn|2 = 0

=⇒

f (z) = σ0(z) +∑m

i=1 σi (z)gi (z) + pm+1(z)(1− |z1|2 − . . .− |zn|2)

(where σi ’s are Hermitian sums of squares)

Example:

z + z + 3 > 0 for all z ∈ C s.t. 1− |z |2 = 0

=⇒

z + z + 3 = |1|2 + |z + 1|2 + 1× (1− |z |2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Positivstellensatz

Complex version (D’Angelo and Putinar 2008)

f (z) > 0 for all z ∈ Cn s.t. gi (z) > 0 and 1− |z1|2 − ..− |zn|2 = 0

=⇒

f (z) = σ0(z) +∑m

i=1 σi (z)gi (z) + pm+1(z)(1− |z1|2 − . . .− |zn|2)

(where σi ’s are Hermitian sums of squares)

Example:

z + z + 3 > 0 for all z ∈ C s.t. 1− |z |2 = 0

=⇒

z + z + 3 = |1|2 + |z + 1|2 + 1× (1− |z |2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

ε > 0 =⇒ f−f opt + ε > 0 on the feasible set

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

ε > 0 =⇒ f − (f opt − ε) > 0 on the feasible set

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

ε > 0 =⇒ f − (f opt − ε)︸ ︷︷ ︸λ

> 0 on the feasible set

f opt = supλ,σi

λ subject to f − λ = σ0 +m∑i=1

σigi

(under the assumption in the Positivstellensatz)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with semidefinite programming

Real version

σ(x) =∑

α σαxα is a sum of squares

∑k(∑

γ pk,γxγ)2

⇐⇒

Matrix (σα+β)α,β is positive semidefinite

Complex version

σ(z) =∑

α,β σα,β zαzβ is a Hermitian sum of squares∑k |∑

γ pk,γzγ |2

⇐⇒

Matrix (σα,β)α,β is Hermitian positive semidefinite

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with semidefinite programming

Real version

σ(x) =∑

α σαxα is a sum of squares

∑k(∑

γ pk,γxγ)2

⇐⇒

Matrix (σα+β)α,β is positive semidefinite

Complex version

σ(z) =∑

α,β σα,β zαzβ is a Hermitian sum of squares∑k |∑

γ pk,γzγ |2

⇐⇒

Matrix (σα,β)α,β is Hermitian positive semidefinite

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Sum-of-squares hierarchy

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

supλ,σi

λ subject to

{f − λ = σ0 +

∑mi=1 σigi

deg(σ0), deg(σigi ) 6 2d

Real version

One of the constraints is a ball x21 + . . .+ x2

n 6 R2

=⇒GLOBAL convergence when d −→ +∞

Complex version

One of the constraints is a sphere |z1|2 + . . .+ |zn|2 = R2

=⇒GLOBAL convergence when d −→ +∞

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Sum-of-squares hierarchy

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

supλ,σi

λ subject to

{f − λ = σ0 +

∑mi=1 σigi

deg(σ0), deg(σigi ) 6 2d

Real version

One of the constraints is a ball x21 + . . .+ x2

n 6 R2

=⇒GLOBAL convergence when d −→ +∞

Complex version

One of the constraints is a sphere |z1|2 + . . .+ |zn|2 = R2

=⇒GLOBAL convergence when d −→ +∞

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Sum-of-squares hierarchy

f opt := inf f subject to gi > 0 , i = 1, . . . ,m

supλ,σi

λ subject to

{f − λ = σ0 +

∑mi=1 σigi

deg(σ0), deg(σigi ) 6 2d

Real version

One of the constraints is a ball x21 + . . .+ x2

n 6 R2

=⇒GLOBAL convergence when d −→ +∞

Complex version

One of the constraints is a sphere |z1|2 + . . .+ |zn|2 = R2

=⇒GLOBAL convergence when d −→ +∞

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Power loss minimization

Minimize

g |v1|2 − g v1v2 − g v2v1 + g |v2|2

over v1, v2 ∈ C subject to

−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2 = 0

b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2 = 0

|v1|2 6 (vmax1 )2

|v2|2 6 (vmax2 )2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Slack variable

Minimize

g |v1|2 − g v1v2 − g v2v1 + g |v2|2

over v1, v2, v3 ∈ C subject to

−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2 = 0

b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2 = 0

|v1|2 6 (vmax1 )2

|v2|2 6 (vmax2 )2

|v1|2 + |v2|2 + |v3|2 = (vmax1 )2 + (vmax

2 )2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Actually works in practice!

D’Angelo and Putinar (2008):

1

18= inf

z∈C1− 4

3|z |2 +

7

18|z |4 s.t. 1− |z |2 > 0

→ complex hierarchy yields −0.3333 at second and third orders

J. and Molzahn (2015):

1

18= inf

z1,z2∈C1− 4

3|z1|2 +

7

18|z1|4 s.t. 1− |z1|2 − |z2|2 = 0

→ complex hierarchy yields 0.0556 ≈ 118 at second order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Actually works in practice!

D’Angelo and Putinar (2008):

1

18= inf

z∈C1− 4

3|z |2 +

7

18|z |4 s.t. 1− |z |2 > 0

→ complex hierarchy yields −0.3333 at second and third orders

J. and Molzahn (2015):

1

18= inf

z1,z2∈C1− 4

3|z1|2 +

7

18|z1|4 s.t. 1− |z1|2 − |z2|2 = 0

→ complex hierarchy yields 0.0556 ≈ 118 at second order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Successful sum of squares decomposition

1− 4

3|z1|2 +

7

18|z1|4 − 0.0556

=

0.2780|z2|2 + 0.2776|z1z2|2 + 0.6667|z2|4

+

(0.9444− 0.3889|z1|2 + 0.6665|z2|2)(1− |z1|2 − |z2|2)

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Another example: an ellipse

Putinar and Scheiderer (2012):

1 = infz∈C

3− |z |2 s.t. |z |2 − 1

4z2 − 1

4z2 − 1 = 0

→ complex hierarchy is unbounded at second and third orders

J. and Molzahn (2015):

1 = infz1,z2∈C

3− |z1|2 s.t.

{|z1|2 − 1

4z21 − 1

4 z21 − 1 = 0

3− |z1|2 − |z2|2 = 0

→ complex hierarchy yields 0.6813 at second order and 0.9699 atthird order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Another example: an ellipse

Putinar and Scheiderer (2012):

1 = infz∈C

3− |z |2 s.t. |z |2 − 1

4z2 − 1

4z2 − 1 = 0

→ complex hierarchy is unbounded at second and third orders

J. and Molzahn (2015):

1 = infz1,z2∈C

3− |z1|2 s.t.

{|z1|2 − 1

4z21 − 1

4 z21 − 1 = 0

3− |z1|2 − |z2|2 = 0

→ complex hierarchy yields 0.6813 at second order and 0.9699 atthird order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Nonnegative slack variable

Putinar and Scheiderer (2012):

1 = infz∈C

3− |z |2 s.t. |z |2 − 1

4z2 − 1

4z2 − 1 = 0

→ complex hierarchy is unbounded at second and third orders

J. and Molzahn (2015):

1 = infz1,z2∈C

3− |z1|2 s.t.

|z1|2 − 1

4z21 − 1

4 z21 − 1 = 0

3− |z1|2 − |z2|2 = 0

iz2 − iz2 = 0

z2 + z2 > 0

→ complex hierarchy yields 0.6813 at second order and 1.0000 atthird order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex plane

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Ellipse

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Nonnegative slack variable

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Sphere constraint

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Projection on semi-sphere

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Edge of chips

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex vs. real hierarchy

Size: asymptotically 2d−1 times smaller at order d

Bound quality: poorer or equal at each order

Global optimality check: rank of moment matrix

Convergence guarantee: if feasible set bounded by radius R, add

x21 + . . .+ x2

n 6 R2 to real hierarchy

zn+1 and |z1|2 + . . .+ |zn+1|2 = R2 to complex hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex vs. real hierarchy

Size: asymptotically 2d−1 times smaller at order d

Bound quality: poorer or equal at each order

Global optimality check: rank of moment matrix

Convergence guarantee: if feasible set bounded by radius R, add

x21 + . . .+ x2

n 6 R2 to real hierarchy

zn+1 and |z1|2 + . . .+ |zn+1|2 = R2 to complex hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex vs. real hierarchy

Size: asymptotically 2d−1 times smaller at order d

Bound quality: poorer or equal at each order

Global optimality check: rank of moment matrix

Convergence guarantee: if feasible set bounded by radius R, add

x21 + . . .+ x2

n 6 R2 to real hierarchy

zn+1 and |z1|2 + . . .+ |zn+1|2 = R2 to complex hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex vs. real hierarchy

Size: asymptotically 2d−1 times smaller at order d

Bound quality: poorer or equal at each order

Global optimality check: rank of moment matrix

Convergence guarantee: if feasible set bounded by radius R, add

x21 + . . .+ x2

n 6 R2 to real hierarchy

zn+1 and |z1|2 + . . .+ |zn+1|2 = R2 to complex hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Oscillatory polynomial optimization

Lemma for ϕ(z) =∑

α,β ϕα,β zαzβ

∀z ∈ Cn, ∀θ ∈ R, ϕ(e iθz) = ϕ(z)

⇐⇒

∀α, β, (|α| − |β|)ϕα,β = 0

Example:ϕ(z) = z2z2 with z ∈ C is oscillatoryϕ(z) = z3z2 with z ∈ C is not oscillatory

In an oscillatory problem

minimum order of the complex hierarchy=

minimum order of the real hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Oscillatory polynomial optimization

Lemma for ϕ(z) =∑

α,β ϕα,β zαzβ

∀z ∈ Cn, ∀θ ∈ R, ϕ(e iθz) = ϕ(z)

⇐⇒

∀α, β, (|α| − |β|)ϕα,β = 0

Example:ϕ(z) = z2z2 with z ∈ C is oscillatoryϕ(z) = z3z2 with z ∈ C is not oscillatory

In an oscillatory problem

minimum order of the complex hierarchy=

minimum order of the real hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Oscillatory polynomial optimization

Lemma for ϕ(z) =∑

α,β ϕα,β zαzβ

∀z ∈ Cn, ∀θ ∈ R, ϕ(e iθz) = ϕ(z)

⇐⇒

∀α, β, (|α| − |β|)ϕα,β = 0

Example:ϕ(z) = z2z2 with z ∈ C is oscillatoryϕ(z) = z3z2 with z ∈ C is not oscillatory

In an oscillatory problem

minimum order of the complex hierarchy=

minimum order of the real hierarchy

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Exploiting sparsity

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment/sum-of-squares hierarchy (power loss min.)

Case MSOS-R MSOS-CName Val. (MW) Time (sec) Val. (MW) Time (sec)

PL-2383wp 24,990 583.4 24,991 53.9PL-2736sp 18,334 44.0 18,335 17.8PL-2737sop 11,397 52.4 11,397 25.7PL-2746wop 19,210 2,662.4 19,212 124.3PL-2746wp 25,267 45.9 25,269 18.5PL-3012wp 27,642 318.7 27,644 141.0PL-3120sp 21,512 386.6 21,512 193.9PEGASE-1354 74,043 406.9 74,042 1,132.6PEGASE-2869 133,944 921.3 133,939 700.8

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Do we need a sphere constraint to ensure convergence?

Minimizeg |v1|2 − g v1v2 − g v2v1 + g |v2|2

over v1, v2 ∈ C subject to

−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2 = 0

b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2 = 0

|v1|2 6 (vmax1 )2

|v2|2 6 (vmax2 )2

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Instrinsic property of electricity?

p(v1, v2)

(−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2

)+

q(v1, v2)

(b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2

)=

|v1|2 + |v2|2 + Hermitian SOS + constant ???

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Instrinsic property of electricity?

p(v1, v2)

(−g − ib

2v1v2 −

g + ib

2v2v1 + g |v2|2 + pdem

2

)+

q(v1, v2)

(b + ig

2v1v2 +

b − ig

2v2v1 − b |v2|2 + qdem

2

)=

|v1|2 + |v2|2 + Hermitian SOS + constant ???

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

References

RTE. “Carte du reseau de transport 400 000 et 225 000 volts,”Gestionnaire du Reseau de Transport, Centre National d’ExpertiseReseau, Depot legal : Mai 2011. [link]

University of Washington, Electrical Engineering, Power SystemsTest Case Archive. [link]

N.Z. Shor, Quadratic Optimization Problems, Sov. J. Comput.Syst. Sci., 25 (1987), pp. 1–11.

J. Lavaei and S.H. Low, Zero Duality Gap in Optimal Power FlowProblem, IEEE Trans. Power Syst., 27 (2012), pp. 92–107.

J. B. Lasserre, Global Optimization with Polynomials and theProblem of Moments, SIAM J. Optim., 11 (2001), pp. 796–817.

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

References

P. A. Parrilo, Structured semidefinite programs and semialgebraicgeometry methods in robustness and optimization, DoctoralThesis, California Institute of Technology, 2000.

D. K. Molzahn and Ian A. Hiskens, Sparsity-ExploitingMoment-Based Relaxations of the Optimal Power Flow Problem,IEEE Transaction on Power Systems, vol. 30, no. 6, pp.3168-3180, November 2015.

J. P. D’Angelo and M. Putinar, Polynomial Optimization onOdd-Dimensional Spheres, in Emerging Applications of AlgebraicGeometry, Springer New York, 2008.

M. Putinar and C. Scheiderer, Quillen Property of Real AlgebraicVarieties, to appear in Munster J. Math.

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

References

M. Putinar and C. Scheiderer, Hermitian Algebra on the Ellipse,Illinois J. Math., 56 (2012), pp. 213–220.

C. J. and D. K. Molzahn, Moment/Sum-of-Squares Hierarchy forComplex Polynomial Optimization, submitted to SIAM J. Optim.

M. Schweighofer, Optimization of Polynomials on CompactSemialgebraic Sets, SIAM J. Optim., 15 (2005), pp. 805–825.

E. J. Anderson and P. Nash, Linear Programming inInfinite-Dimensional Spaces, Theory and Applications, Wiley Int.Ser. Disc. Math. Optim., 1987.

C. D. Aliprantis and K. Border, Infinite Dimensional Analysis, AHitchhiker’s guide, Second Edition, Springer-Verlag BerlinHeidelberg, 1999.

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Images

Ecociel France, Panneaux Solaires Photovoltaıques. [link]

Autolib’ va s’exporter a Lyon, L’Argus, Actualites auto, May 30th

2013. [link]

Transmission Line Monitor and Dynamic Line Rating System,Lindsey. [link]

Dispatching national, Rte France. [link]

Paint, Version 6.1, Microsoft Windows, 2009.

Jean Bernard Lasserre, Tuchan, Photograph. [link]

POV-Ray, The Persistence of Vision Raytracer, Version 3.7.

Kellogg’s achete les chips Pringles a Procter & Gamble, Le Figaro,December 15th 2012. [link]

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Images

Earth at night from NASA’s Suomi National Polar-orbitingPartnership Satellite, Earth shimmers at Christmas as billions offairy lights become visible from space, The Telegraph, ScienceNews. [link]

Perry Babin, Oscilloscope, Basic Car Audio Electronics. [link]

MRI Image of Knee, Medical Media Images, Precision Color MedialImages. [link]

David Ratledge, Orion Nebula taken with a modified Canon 40D(Baader filter) from lighted polluted Lancashire!, Digital SLRImaging. [link]

Radar, Technology, Telecommunications and Media, Speyside,Corporate Relations. [link]

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Oscillatory phenomena in physical systems

Schrodinger equation: HΨ = i~∂Ψ

∂t

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Future directions

Enhance tractability of complex hierarchy

When are real and complex hierarchies equal?

Do power flow equations possess the Quillen property?

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Thank you for your attention!

Feel free to me contact at

cedric.josz@gmail.com

for questions or suggestions.

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Backup slides

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Moment/sum-of-squares hierarchy

Name Active power minimization (MW)Case MSOS-R MSOS-C Matpower

PL-2383wp 24,990 24,991 24,991PL-2736sp 18,334 18,335 18,336PL-2737sop 11,397 11,397 11,397PL-2746wop 19,210 19,212 19,212PL-2746wp 25,267 25,269 25,269PL-3012wp 27,642 27,644 27,646PL-3120sp 21,512 21,512 21,513PEGASE-1354 74,043 74,042 74,043PEGASE-2869 133,944 133,939 133,945

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Nonnegative slack variable

Putinar and Scheiderer (2012):

1 = infz∈C

3− |z |2 s.t. |z |2 − 1

4z2 − 1

4z2 − 1 = 0

→ complex hierarchy is unbounded at second and third orders

J. and Molzahn (2015):

1 = infz1,z2∈C

3− |z1|2 s.t.

|z1|2 − 1

4z21 − 1

4 z21 − 1 = 0

3− |z1|2 − |z2|2 = 0

iz2 − iz2 = 0

z2 + z2 > 0

→ complex hierarchy yields 0.6813 at second order and 1.0000 atthird order

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

3rd order complex moment matrix

(0,0

)

(1,0

)

(0,1

)

(2,0

)

(1,1

)

(0,2

)

(3,0

)

(2,1

)

(1,2

)

(0,3

)

(0, 0) 1 0 1 2 0 1 0 2 0 1(1, 0) 0 2 0 0 2 0 4 0 2 0(0, 1) 1 0 1 2 0 1 0 2 0 1(2, 0) 2 0 2 4 0 2 0 4 0 2(1, 1) 0 2 0 0 2 0 4 0 2 0(0, 2) 1 0 1 2 0 1 0 2 0 1(3, 0) 0 4 0 0 4 0 8 0 4 0(2, 1) 2 0 2 4 0 2 0 4 0 2(1, 2) 0 2 0 0 2 0 4 0 2 0(0, 3) 1 0 1 2 0 1 0 2 0 1

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Certificate of global optimality

(0,0

)

(1,0

)

(0,1

)

(2,0

)

(1,1

)

(0,2

)

(3,0

)

(2,1

)

(1,2

)

(0,3

)

(0, 0) 1 0 1 2 0 1 0 2 0 1(1, 0) 0 2 0 0 2 0 4 0 2 0(0, 1) 1 0 1 2 0 1 0 2 0 1(2, 0) 2 0 2 4 0 2 0 4 0 2(1, 1) 0 2 0 0 2 0 4 0 2 0(0, 2) 1 0 1 2 0 1 0 2 0 1(3, 0) 0 4 0 0 4 0 8 0 4 0(2, 1) 2 0 2 4 0 2 0 4 0 2(1, 2) 0 2 0 0 2 0 4 0 2 0(0, 3) 1 0 1 2 0 1 0 2 0 1

rank M1(y) = rank M3(y) = 2 so there are two global solutions

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex polynomial optimization

Minimize

f (z) :=∑α,β

fα,β zαzβ (where zα := zα1

1 . . . zαnn )

over z ∈ Cn subject to

gi (z) :=∑α,β

gi ,α,β zαzβ = 0 , 1 6 i 6 m

hj(z) :=∑α,β

hj ,α,β zαzβ > 0 , 1 6 j 6 p

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If R2 − |z1|2 − . . .− |zn|2 ∈ S , then: f|XM> 0 =⇒ f ∈ M

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Quillen property of semi-algebraic varieties

Ideal generated by equality constraints:

I := Ch[z , z ]g1 + . . .+ Ch[z , z ]gm

Semiring defined by ideal:

S := I + Σ[z ] where Σ[z ] := {∑k

|pk |2 | pk ∈ C[z ] }

Module defined by equality and inequality constraints:

M := S + Σ[z ]h1 + . . .+ Σ[z ]hp

Feasible set of complex polynomial optimization:

XM := { z ∈ Cn | ∀ϕ ∈ M, ϕ(z) > 0 }

Putinar and Scheiderer (to appear in Munster J. Math.)

If S is Archimedean, then M has Quillen’s property.

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with optimization

Lemma

Quillen property ⇐⇒ inf{f (z) | z ∈ XM} = sup{λ | f − λ ∈ M}

Duality bracket:〈., .〉 : Ch[z , z ]×H −→ R

(ϕ, y) 7−→∑

α,β ϕα,βyα,β

Continuous operator:A : Ch[z , z ] −→ Ch[z , z ]

ϕ 7−→ ϕ− ϕ0,0

Convex cone: M = I + Σ[z ] + Σ[z ]h1 + . . .+ Σ[z ]hp

Constants: δ0,0 ∈ H and b := Af

Linear program of infinite dimension

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with semidefinite programming

Primal problem

ϕ ∈ Σ[z ] ⇐⇒ (ϕα,β)α,β < 0

Dual problem

M∗ =(∑

i Ch[z , z ]gi + Σ[z ] +∑

j Σ[z ]hj

)∗=

⋂i (|C[z ]|2gi )⊥ ∩ (|C[z ]|2)∗ ∩

⋂j(|C[z ]|2hj)∗

For example, if φ ∈ C[z ], then:

〈|φ|2hj , y〉 =∑α,β

φαφβ〈zαzβhj(z), y〉 > 0

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with semidefinite programming

Primal problem

ϕ ∈ Σ[z ] ⇐⇒ (ϕα,β)α,β < 0

Dual problem

M∗ =(∑

i Ch[z , z ]gi + Σ[z ] +∑

j Σ[z ]hj

)∗=

⋂i (|C[z ]|2gi )⊥ ∩ (|C[z ]|2)∗ ∩

⋂j(|C[z ]|2hj)∗

For example, if φ ∈ C[z ], then:

〈|φ|2hj , y〉 =∑α,β

φαφβ〈zαzβhj(z), y〉 > 0

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Relationship with semidefinite programming

Primal problem

ϕ ∈ Σ[z ] ⇐⇒ (ϕα,β)α,β < 0

Dual problem

M∗ =(∑

i Ch[z , z ]gi + Σ[z ] +∑

j Σ[z ]hj

)∗=

⋂i (|C[z ]|2gi )⊥ ∩ (|C[z ]|2)∗ ∩

⋂j(|C[z ]|2hj)∗

For example, if φ ∈ C[z ], then:

〈|φ|2hj , y〉 =∑α,β

φαφβ〈zαzβhj(z), y〉 > 0

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex moment/sum-of-squares hierarchy

f opt := infz∈Cn f (z) s.t. gi (z) = 0 and hj(z) > 0

Semidefinite programming hierarchy

infy∈Hd〈f , y〉

s.t. y0,0 = 1 and Md(y) < 0Md−d(gi )(giy) = 0, i = 1, . . . ,mMd−d(hj )(hjy) < 0, j = 1, . . . , p

supλ,r ,σ λ

s.t. f − λ = σ +∑m

i=0 rigi +∑p

j=0 σjhjλ ∈ R, σ ∈ Σd [z ], ri ∈ Rd−d(gi )[z , z ], σj ∈ Σd−d(hj )[z ]

Md−k(ϕy) is a Hermitian matrix indexed by |α|, |β| 6 d − k and:

( (Md−k(ϕy) )α,β :=∑γ,δ

ϕγ,δ yα+γ,β+δ

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex moment/sum-of-squares hierarchy

f opt := infz∈Cn f (z) s.t. gi (z) = 0 and hj(z) > 0

Semidefinite programming hierarchy

infy∈Hd〈f , y〉

s.t. y0,0 = 1 and Md(y) < 0Md−d(gi )(giy) = 0, i = 1, . . . ,mMd−d(hj )(hjy) < 0, j = 1, . . . , p

supλ,r ,σ λ

s.t. f − λ = σ +∑m

i=0 rigi +∑p

j=0 σjhjλ ∈ R, σ ∈ Σd [z ], ri ∈ Rd−d(gi )[z , z ], σj ∈ Σd−d(hj )[z ]

Md−k(ϕy) is a Hermitian matrix indexed by |α|, |β| 6 d − k and:

( (Md−k(ϕy) )α,β :=∑γ,δ

ϕγ,δ yα+γ,β+δ

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Complex moment/sum-of-squares hierarchy

f opt := infz∈Cn f (z) s.t. gi (z) = 0 and hj(z) > 0

Semidefinite programming hierarchy

infy∈Hd〈f , y〉

s.t. y0,0 = 1 and Md(y) < 0Md−d(gi )(giy) = 0, i = 1, . . . ,mMd−d(hj )(hjy) < 0, j = 1, . . . , p

supλ,r ,σ λ

s.t. f − λ = σ +∑m

i=0 rigi +∑p

j=0 σjhjλ ∈ R, σ ∈ Σd [z ], ri ∈ Rd−d(gi )[z , z ], σj ∈ Σd−d(hj )[z ]

Md−k(ϕy) is a Hermitian matrix indexed by |α|, |β| 6 d − k and:

( (Md−k(ϕy) )α,β :=∑γ,δ

ϕγ,δ yα+γ,β+δ

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Algebraic geometry and measure theory

Quillen property:

∀ϕ ∈ Ch[z , z ], ϕ|XM> 0 =⇒ ϕ ∈ M

Strong moment property:

∀y ∈ H, y ∈ M∗ =⇒ yα,β =∫XM

zαzβdµ

Putinar and Scheiderer (to appear in Munster J. Math.)

Quillen’s property =⇒ Strong moment property

Converse true if M is Archimedean

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Algebraic geometry and measure theory

Quillen property:

∀ϕ ∈ Ch[z , z ], ϕ|XM> 0 =⇒ ϕ ∈ M

Strong moment property:

∀y ∈ H, y ∈ M∗ =⇒ yα,β =∫XM

zαzβdµ

Putinar and Scheiderer (to appear in Munster J. Math.)

Quillen’s property =⇒ Strong moment property

Converse true if M is Archimedean

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Optimization

Linear program

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Quillen property ⇐⇒ val(P) = f0,0 − f opt

Strong moment property ⇐⇒ val(D) = f0,0 − f opt

Weak duality

val(P) > val(D) > f0,0 − f opt

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Optimization

Linear program

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Quillen property ⇐⇒ val(P) = f0,0 − f opt

Strong moment property ⇐⇒ val(D) = f0,0 − f opt

Weak duality

val(P) > val(D) > f0,0 − f opt

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

Optimization

Linear program

(P) : infϕ∈Ch[z,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b and ϕ ∈ M(D) : supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ M∗

Quillen property ⇐⇒ val(P) = f0,0 − f opt

Strong moment property ⇐⇒ val(D) = f0,0 − f opt

Weak duality

val(P) > val(D) > f0,0 − f opt

Cedric JOSZ, Daniel K. MOLZAHN cedric.josz@rte-france.com Talk at the University of Illinois at Urbana-Champaign

top related