comp 3503 / 5013 dynamic neural networks

Post on 08-Feb-2016

73 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Comp 3503 / 5013 Dynamic Neural Networks. Daniel L. Silver March, 2014. Outline. Hopfield Networks Boltzman Machines Mean Field Theory Restricted Boltzman Machines (RBM). Dynamic Neural Networks. See handout for image of spider, beer and dog - PowerPoint PPT Presentation

TRANSCRIPT

1

Comp 3503 / 5013Dynamic Neural Networks

Daniel L. SilverMarch, 2014

2

Outline

• Hopfield Networks• Boltzman Machines• Mean Field Theory• Restricted Boltzman Machines (RBM)

3

Dynamic Neural Networks

• See handout for image of spider, beer and dog• The search for a model or hypothesis can be

considered the relaxation of a dynamic system into a state of equilibrium

• This is the nature of most physical systems– Pool of water– Air in a room

• Mathematics is that of thermal-dynamics– Quote from John Von Neumann

4

Hopfield Networks

• See hand out

5

Hopfield Networks

• Hopfield Network video intro– http://www.youtube.com/watch?v=

gfPUWwBkXZY– http://faculty.etsu.edu/knisleyj/neural/

• Try these Applets:– http://lcn.epfl.ch/tutorial/english/hopfield/html/i

ndex.html– http://www.cbu.edu/~pong/ai/hopfield/

hopfieldapplet.html

6

Hopfield Networks

Basics with Geoff Hinton:• Introduction to Hopfield Nets– http://www.youtube.com/watch?v=YB3-Hn-inHI

• Storage capacity of Hopfield Nets– http://www.youtube.com/watch?v=O1rPQlKQBLQ

7

Hopfield Networks

Advanced concepts with Geoff Hinton:• Hopfield nets with hidden units– http://www.youtube.com/watch?v=bOpddsa4BPI

• Necker Cube – http://www.cs.cf.ac.uk/Dave/JAVA/boltzman/

Necker.html• Adding noise to improve search– http://www.youtube.com/watch?v=kVgT2Eaa6KA

8

Boltzman Machine

- See Handout - http://www.scholarpedia.org/article/Boltzmann_machine

Basics with Geoff Hinton• Modeling binary data– http://www.youtube.com/watch?v=MKdvJst8a6k

• BM Learning Algorithm – http://www.youtube.com/watch?v=QgrFsnHFeig

9

Limitations of BMs

• BM Learning does not scale well• This is due to several factors, the most important

being:– The time the machine must be run in order to collect

equilibrium statistics grows exponentially with the machine's size = number of nodes• For each example – sample nodes, sample states

– Connection strengths are more plastic when the units have activation probabilities intermediate between zero and one. Noise causes the weights to follow a random walk until the activities saturate (variance trap).

10

Potential Solutions

• Use a momentum term as in BP:

• Add a penalty term to create sparse coding (encourage shorter encodings for different inputs)

• Use implementation tricks to do more in memory – batches of examples

• Restrict number of iterations in + and – phases• Restrict connectivity of network

wij(t+1)=wij(t) +ηΔwij+αΔwij(t-1)

11

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

wij

j

i

Σj=wijvi

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Recall = Relaxation

Σi=wijhj

vo or ho

12

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

wij

j

i

Σj=wijvi

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Recall = Relaxation

Σi=wijhj

vo or ho

13

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

j

i

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Σi=wijhj

vo or ho

Oscar Winner SF/FantasyRecall = Relaxation

wij

Σj=wijvi

14

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

j

i

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Σi=wijhj

vo or ho

Oscar Winner SF/FantasyRecall = Relaxation

wij

Σj=wijvi

15

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

j

i Σi=wijhj

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Learning = ~ Gradient Descent = Constrastive Divergence

Update hidden units

P=P+vihj vo or ho

Σj=wijvi

16

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

j

i

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Learning = ~ Gradient Descent = Constrastive Divergence

Reconstruct visible units

vo or ho

Σj=wijvi

Σi=wijhj

17

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

j

i

Σj=wijvi

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Learning = ~ Gradient Descent = Constrastive Divergence

Reupdate hidden units

vo or ho

Σi=wijhj

N=N+vihj

18

Restricted Boltzman Machine

Source: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

SF/Fantasy Oscar Winner

Δwij=<P>-<N>

j

i

Σj=wijvi

hj pj=1/(1-e-Σj)

vi pi=1/(1-e-Σi)

Σi=wijhj

vo or ho

wij=wij +ηΔwij

Learning = ~ Gradient Descent = Constrastive Divergence

Update weights

19

Restricted Boltzman Machine

• RBM Overview:– http

://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

• Wikipedia on DLA and RBM:– http://en.wikipedia.org/wiki/Deep_learning

• RBM Details and Code:– http://www.deeplearning.net/tutorial/rbm.html

20

Restricted Boltzman Machine

Geoff Hinton on RBMs:• RBMs and Constrastive Divergence Algorithm– http://www.youtube.com/watch?v=fJjkHAuW0Yk

• An example of RBM Learning– http://www.youtube.com/watch?v=Ivj7jymShN0

• RBMs applied to Collaborative Filtering– http://www.youtube.com/watch?v=laVC6WFIXjg

21

Additional References

• Coursera course – Neural Networks fro Machine Learning:– https://class.coursera.org/neuralnets-2012-001/

lecture• ML: Hottest Tech Trend in next 3-5 Years– http://www.youtube.com/watch?v=b4zr9Zx5WiE

top related